Skip to main content
Log in

Phase Dependent Sign Changes of GABAergic Synaptic Input Explored In-Silicio and In-Vitro

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Inhibitory interactions play a crucial role in the synchronization of neuronal activity. Here we investigate the effect of GABAergic PSPs on spike timing in cortical neurons that exhibit an oscillatory modulation of their membrane potential. To this end we combined numerical simulations with in-vitro patch-clamp recordings from layer II/III pyramidal cells of the rat visual cortex. Special emphasis was placed on exploring how the reversal potential of the GABAergic synaptic currents (EGABA) and the phase relations of the PSPs relative to the oscillation cycles affect the timing of spikes riding on the depolarizing peaks of the oscillations. The simulations predicted: (1) With EGABA more negative than the oscillation minima PSPs are hyperpolarizing at all phases and thus delay or prevent spikes. (2) With EGABA being more positive than the oscillation maxima PSPs are depolarizing in a phase-independent way and lead to a phase advance of spikes. (3) In the intermediate case where EGABA lies within oscillation maxima and minima PSPs are either hyper- or depolarizing depending on their phase relations to the V m oscillations and can therefore either delay or advance spikes. Experiments conducted in this most interesting last configuration with biphasic PSPs agreed with the model predictions. Additional theoretical investigations revealed the effect of these PSP induced shifts in spike timing on synchronization in neuronal circuits. The results suggest that GABAergic mechanisms can assume highly specific timing functions in oscillatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticotronics. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Alonso JM, Usrey WM, Reid RC (1996) Precisely correlated firing in cells of the lateral geniculate nucleus. Nature 383: 815–819.

    Article  PubMed  Google Scholar 

  • Artola A, Brocher S, Singer W (1990) Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex. Nature 347: 69–72.

    Article  PubMed  Google Scholar 

  • Borg-Graham L, Monier C, Fregnac Y (1996) Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex. J Physiol Paris 90: 185–188.

    Article  PubMed  Google Scholar 

  • Brecht M, Singer W, Engel AK (1999) Patterns of synchronization in the superior colliculus of anesthetized cats. J Neurosci 19: 3567–3579.

    PubMed  Google Scholar 

  • Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol (Lond) 513(Pt 1): 117–126.

    Article  Google Scholar 

  • Bush P, Sejnowski T (1996) Inhibition synchronizes sparsely connected cortical neurons within and between columns in realistic network models. J Comput Neurosci 3: 91–110.

    Article  PubMed  Google Scholar 

  • Bush PC, Sejnowski TJ (1993) Reduced compartmental models of neocortical pyramidal cells. J Neurosci Methods 46: 159–166.

    Article  PubMed  Google Scholar 

  • Chen Z, Ermentrout B, Wang XJ (1998) Wave propagation mediated by GABAB synapse and rebound excitation in an inhibitory network: A reduced model approach. J Comput Neurosci 5: 53–69.

    Article  PubMed  Google Scholar 

  • Dallwig R, Deitmer JW, Backus KH (1999) On the mechanism of GABA-induced currents in cultured rat cortical neurons. Pflugers Arch 437: 289–297.

    Article  PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1: 195–230.

    Article  PubMed  Google Scholar 

  • Dodt HU, Zieglgansberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537: 333–336.

    Article  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2: 704–716.

    Article  PubMed  Google Scholar 

  • Ermentrout B, Pascal M, Gutkin B (2001) The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput 13: 1285–1310.

    Article  PubMed  Google Scholar 

  • Ermentrout GB (2002) Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students (Software, Environments, Tools). Society for Industrial & Applied Mathematics.

  • Ermentrout GB, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators. I SIAM J Math Analysis 15: 215–237.

    Article  Google Scholar 

  • Fries P, Neuenschwander S, Engel AK, Goebel R, Singer W (2001) Rapid feature selective neuronal synchronization through correlated latency shifting. Nat Neurosci 4: 194–200.

    Article  PubMed  Google Scholar 

  • Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291: 1560–1563.

    Article  PubMed  Google Scholar 

  • Gray CM (1999) The temporal correlation hypothesis of visual feature integration: Still alive and well. Neuron 24: 31–25.

    Article  PubMed  Google Scholar 

  • Gray CM, McCormick DA (1996) Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274: 109–113.

    Article  PubMed  Google Scholar 

  • Gulledge AT, Stuart GJ (2003) Excitatory actions of GABA in the cortex. Neuron 37(2): 299–309.

    Article  PubMed  Google Scholar 

  • Gupta A, Wang Y, Markram H (2000) Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287: 273–278.

    Article  PubMed  Google Scholar 

  • Hansel D, Mato G, Meunier C (1995) Synchrony in excitatory neural networks. Neural Comput 7: 307–337.

    PubMed  Google Scholar 

  • Hines ML, Carnevale NT (1997) The NEURON simulation environment. Neural Comput 9: 1179–1209.

    PubMed  Google Scholar 

  • Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput 12: 995–1007.

    Article  PubMed  Google Scholar 

  • Huerta PT, Lisman JE (1995) Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron 15: 1053–1063.

    Article  PubMed  Google Scholar 

  • Jeaong, HY, Gutkin, BS (2005) Study on the role of GABAergic synapses for synchronization, Neurocomputing (in press).

  • Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22: 361–374.

    Article  PubMed  Google Scholar 

  • Larkum ME, Zhu JJ, Sakmann B (1999) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398: 338–341.

    Article  PubMed  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209–213.

    Article  PubMed  Google Scholar 

  • Mainen ZF, Joerges J, Huguenard JR, Sejnowski TJ (1995) A model of spike initiation in neocortical pyramidal neurons. Neuron 15: 1427–1439.

    Article  PubMed  Google Scholar 

  • Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215.

    Article  PubMed  Google Scholar 

  • Marsalek P, Koch C, Maunsell J (1997) On the relationship between synaptic input and spike output jitter in individual neurons. Proc Natl Acad Sci USA 94: 735–740.

    Article  PubMed  Google Scholar 

  • McCormick D, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63: 815–846.

    Article  PubMed  Google Scholar 

  • Michelson HB, Wong RK (1991) Excitatory synaptic responses mediated by GABAA receptors in the hippocampus. Science 253: 1420–1423.

    PubMed  Google Scholar 

  • Murthy VN, Fetz EE (1996) Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. J Neurophysiol 76: 3968–3982.

    PubMed  Google Scholar 

  • Nakanishi K, Kukita F (2000) Intracellular [Cl(-)] modulates synchronous electrical activity in rat neocortical neurons in culture by way of GABAergic inputs. Brain Res 863: 192–204.

    Article  PubMed  Google Scholar 

  • O’Keefe J (1993) Hippocampus, theta, and spatial memory. Curr Opin Neurobiol 3: 917–924.

    Article  PubMed  Google Scholar 

  • Owens, DF, Boyce, LH, Davis, MB, Kriegstein, AR (1996). Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16(20): 6414–6423.

    PubMed  Google Scholar 

  • Penttonen M, Kamondi A, Acsady L, Buzsaki G (1998) Gamma frequency oscillation in the hippocampus of the rat: Intracellular analysis in vivo. Eur J Neurosci 10: 718–728.

    Article  PubMed  Google Scholar 

  • Rinzel J, Terman D, Wang X, Ermentrout B (1998) Propagating activity patterns in large-scale inhibitory neuronal networks. Science 279: 1351–1355.

    Article  PubMed  Google Scholar 

  • Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, Pirvola U, Saarma M, Kaila K (1999) The +/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397: 251–255.

    Article  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models [In Process Citation]. J Neurosci 20: 6193–6209.

    PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J Neurosci 18: 3870–3896.

    PubMed  Google Scholar 

  • Sherman SM (2001) Tonic and burst firing: Dual modes of thalamocortical relay. Trends Neurosci 24: 122–126.

    Article  PubMed  Google Scholar 

  • Sillito AM, Grieve KL, Jones HE, Cudeiro J, Davis J (1995) Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378: 492–496.

    Article  PubMed  Google Scholar 

  • Singer W (1999a) Neuronal synchrony: A versatile code for the definition of relations? Neuron 24: 49–25.

    Article  Google Scholar 

  • Singer W (1999b) Time as coding space? Curr Opin Neurobiol 9: 189–194.

    Article  Google Scholar 

  • Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors [see comments]. Science 269: 977–981.

    PubMed  Google Scholar 

  • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 1: 210–217.

    Article  PubMed  Google Scholar 

  • Stuart GJ, Hausser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat Neurosci 4: 63–71.

    Article  PubMed  Google Scholar 

  • Sun MK, Nelson TJ, Xu H, Alkon DL (1999) Calexcitin transformation of GABAergic synapses: From excitation filter to amplifier. Proc Natl Acad Sci USA 96: 7023–7028.

    Article  PubMed  Google Scholar 

  • Thomson AM, Destexhe A (1999) Dual intracellular recordings and computational models of slow inhibitory postsynaptic potentials in rat neocortical and hippocampal slices. Neuroscience 92: 1193–1215.

    Article  PubMed  Google Scholar 

  • Thomson AM, Deuchars J (1997) Synaptic interactions in neocortical local circuits: Dual intracellular recordings in vitro. Cereb Cortex 7: 510–522.

    Article  PubMed  Google Scholar 

  • Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66: 635–650.

    PubMed  Google Scholar 

  • Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not excitation synchronizes neural firing. J Comput Neurosci 1: 313–321.

    Article  PubMed  Google Scholar 

  • Volgushev M, Chistiakova M, Singer W (1998) Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential. Neuroscience 83: 15–25.

    Article  PubMed  Google Scholar 

  • Wespatat V, Tennigkeit F, Singer W (2004) Phase sensitivity of synaptic modifications in oscillating cells of rat visual cortex. J Neurosci 24(41): 9067–9075.

    Article  PubMed  Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Trevino C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5: 5–16.

    Article  PubMed  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: Experimental and mathematical observations on network dynamics. Int J Psychophysiol 38: 315–336.

    Article  PubMed  Google Scholar 

  • Williams TL, Bowtell G (1997) The calculation of frequency-shift functions for chains of coupled oscillators, with application to a network model of the lamprey locomotor pattern generator. J Comput Neurosci 4: 47–55.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus M. Stiefel.

Additional information

Action Editor: Alain Destexhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiefel, K.M., Wespatat, V., Gutkin, B. et al. Phase Dependent Sign Changes of GABAergic Synaptic Input Explored In-Silicio and In-Vitro. J Comput Neurosci 19, 71–85 (2005). https://doi.org/10.1007/s10827-005-0188-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-005-0188-3

Keywords

Navigation