Skip to main content
Log in

Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel optical refractive index sensor is proposed and theoretically investigated by cascading a PANDA and a Mach–Zehnder interferometer (MZI) based on the Vernier effect. The PANDA acts as a filter in this structure. Also, the MZI is a function of the refractive index variation. Therefore, the MZI structure acts as a refractive index sensing element in the proposed structure. Detailed modeling and instructions are provided for the design of such devices. These are supposed to be manufactured on platforms compatible with silicon-on-insulator (SOI) complementary metal-oxide semiconductor (CMOS). It is shown that the proposed sensor reaches high sensitivity (600 m/RIU) and limit of detection (LOD 3.4\(\times\)10\(^{-5}\) RIU), which is more sensitive than the single MZI. In addition, the sensitivity of the sensor was measured when the temperature changed from 26 to 35 \(^{\circ }\)C. This system has many applications in the field of high-sensitivity biosensing and environmental monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, J., Zheng, Y., Chen, L.H., Chan, C.C., Dong, X., Shum, P.P., Su, H.: Miniature temperature sensor with Germania-core optical fiber. Opt. Express 23(14), 17687 (2015)

    Article  Google Scholar 

  2. Huang, T., Shao, X., Wu, Z., Sun, Y., Zhang, J., Lam, H.Q., Hu, J., Shum, P.P.: A sensitivity enhanced temperature sensor based on highly Germania-doped few-mode fiber. Opt. Commun. 324, 53 (2014)

    Article  Google Scholar 

  3. Cao, B., Zhao, J., Gu, Y., Fan, S., Yang, P.: Security-aware industrial wireless sensor network deployment optimization. IEEE Trans. Ind. Inform. 16(8), 5309 (2019)

    Article  Google Scholar 

  4. Zhang, C., Ou, J.: Control structure interaction of electromagnetic mass damper system for structural vibration control. J. Eng. Mech. 134(5), 428 (2008)

    Google Scholar 

  5. Sun, L., Su, Z., Xia, Y., Zhang, C., Li, C.: Superwide-range fiber Bragg grating displacement sensor based on an eccentric gear: principles and experiments. J. Aerosp. Eng. 32(1), 04018129 (2019)

    Article  Google Scholar 

  6. Xu, H.-B.: Active mass driver control system for suppressing wind-induced vibration of the Canton Tower. Smart Struct. Syst. 13(2), 281 (2014)

    Article  Google Scholar 

  7. Xu, H., Zhang, C., Li, H., Ou, J.: Real-time hybrid simulation approach for performance validation of structural active control systems: a linear motor actuator based active mass driver case study. Struct. Control Health Monit. 21(4), 574 (2014)

    Article  Google Scholar 

  8. Wang, X., Xu, J., Zhu, Y., Cooper, K.L., Wang, A.: All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett. 31(7), 885 (2006)

    Article  Google Scholar 

  9. Sun, L., Li, C., Zhang, C., Liang, T., Zhao, Z.: The strain transfer mechanism of fiber Bragg grating sensor for extra large strain monitoring. Sensors 19, 8 (2019). https://doi.org/10.3390/s19081851

    Article  Google Scholar 

  10. Zhang, C., Alam, Z., Sun, L., Su, Z., Samali, B.: Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads. Struct. Control Health Monit. 26(3), e2307 (2019)

    Article  Google Scholar 

  11. Zhang, C., Wang, H.: Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations. Appl. Sci. 9, 20 (2019)

    Google Scholar 

  12. Sun, L., Li, C., Zhang, C., Su, Z., Chen, C.: Early monitoring of rebar corrosion evolution based on FBG sensor. Int. J. Struct. Stab. Dyn. 18(08), 1840001 (2018). https://doi.org/10.1142/S0219455418400011

    Article  Google Scholar 

  13. Gholipour, G., Zhang, C., Mousavi, A.A.: Nonlinear numerical analysis and progressive damage assessment of a cable-stayed bridge pier subjected to ship collision. Marine Structures 69, 102662 (2020)

    Article  Google Scholar 

  14. Zhang, C., Ou, J.: Modeling and dynamical performance of the electromagnetic mass driver system for structural vibration control. Eng. Struct. 82, 93 (2015)

    Article  Google Scholar 

  15. Zhang, C.W., Ou, J.P., Zhang, J.Q.: Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers. Struct. Control Health Monit. 13(5), 885 (2006)

    Article  Google Scholar 

  16. Prerana, P., Varshney, R.K., Pal, B.P., Nagaraju, B.: High sensitive fiber optic temperature sensor based on a side-polished single-mode fiber coupled to a tapered multimode overlay waveguide. J. Opt. Soc. Korea 14(4), 337 (2010)

    Article  Google Scholar 

  17. Zhao, C., Li, J.: Equilibrium selection under the Bayes-based strategy updating rules. Symmetry 12(5), 739 (2020)

    Article  Google Scholar 

  18. Fu, X., Fortino, G., Li, W., Pace, P., Yang, Y.: WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Gener. Comput. Syst. 91, 223 (2019)

    Article  Google Scholar 

  19. Fu, X., Yang, Y.: Modeling and analysis of cascading node-link failures in multi-sink wireless sensor networks. Reliab. Eng. Syst. Saf. 197, 106815 (2020)

    Article  Google Scholar 

  20. Lin, J., Cai, X., Liu, Z., Liu, N., Xie, M., Zhou, B., Wang, H., Guo, Z.: Anti-liquid-interfering and bacterially antiadhesive strategy for highly stretchable and ultrasensitive strain sensors based on Cassie-Baxter wetting state. Adv. Funct. Mater. 30(23), 2000398 (2020)

    Article  Google Scholar 

  21. Zuo, C., Sun, J., Li, J., Asundi, A., Chen, Q.: Wide-field high-resolution 3d microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020)

    Article  Google Scholar 

  22. Zuo, C., Li, J., Sun, J., Fan, Y., Zhang, J., Lu, L., Zhang, R., Wang, B., Huang, L., Chen, Q.: Transport of intensity equation: a tutorial. Opt. Lasers Eng. 106187 (2020)

  23. Ni, T., Xu, Q., Huang, Z., Liang, H., Yan, A., Wen, X.: A cost-effective TSV repair architecture for clustered faults in 3D IC. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2020)

  24. Long, Q., Wu, C., Wang, X.: A system of nonsmooth equations solver based upon subgradient method. Appl. Math. Comput. 251, 284 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Zhu, J., Shi, Q., Wu, P., Sheng, Z., Wang, X.: Complexity analysis of prefabrication contractors dynamic price competition in mega projects with different competition strategies. Complexity 2018 (2018)

  26. Shi, K., Tang, Y., Zhong, S., Yin, C., Huang, X., Wang, W.: Nonfragile asynchronous control for uncertain chaotic Lurie network systems with Bernoulli stochastic process. Int. J. Robust Nonlinear Control 28(5), 1693 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shi, K., Tang, Y., Liu, X., Zhong, S.: Non-fragile sampled-data robust synchronization of uncertain delayed chaotic Lurie systems with randomly occurring controller gain fluctuation. ISA Trans. 66, 185 (2017)

    Article  Google Scholar 

  28. Shi, K., Tang, Y., Liu, X., Zhong, S.: Secondary delay-partition approach on robust performance analysis for uncertain time-varying Lurie nonlinear control system. Opt. Control Appl. Methods 38(6), 1208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, M., Li, T., Wang, Z., Deng, X., Yang, R., Guan, Z.: Reducing complexity of HEVC: a deep learning approach. IEEE Trans. Image Process. 27(10), 5044 (2018)

    Article  MathSciNet  Google Scholar 

  30. Yang, R., Xu, M., Liu, T., Wang, Z., Guan, Z.: Enhancing quality for HEVC compressed videos. IEEE Trans. Circuits Syst. Video Technol. 29(7), 2039 (2018)

    Article  Google Scholar 

  31. Wu, C., Wang, X., Chen, M., Kim, M.J.: Differential received signal strength based RFID positioning for construction equipment tracking. Adv. Eng. Inform. 42, 100960 (2019)

    Article  Google Scholar 

  32. Jiang, Q., Shao, F., Gao, W., Chen, Z., Jiang, G., Ho, Y.S.: Unified no-reference quality assessment of singly and multiply distorted stereoscopic images. IEEE Trans. Image Process. 28(4), 1866 (2018)

    Article  MathSciNet  Google Scholar 

  33. Xu, M., Li, C., Chen, Z., Wang, Z., Guan, Z.: Assessing visual quality of omnidirectional videos. IEEE Trans. Circuits Syst. Video Technol. 29(12), 3516 (2018)

    Article  Google Scholar 

  34. Zuo, C., Chen, Q., Tian, L., Waller, L., Asundi, A.: Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective. Opt. Lasers Eng. 71, 20 (2015)

    Article  Google Scholar 

  35. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q.: High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. 7(1), 1 (2017)

    Article  Google Scholar 

  36. Wang, L., Huang, Y., Xie, Y., Du, Y.: A new regularization method for dynamic load identification. Sci. Prog. 103(3), 0036850420931283 (2020)

    Article  Google Scholar 

  37. Guan, Z., Xing, Q., Xu, M., Yang, R., Liu, T., Wang, Z.: MFQE 2.0: new approach for multi-frame quality enhancement on compressed video. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

  38. Liu, J., Wu, C., Wu, G., Wang, X.: A novel differential search algorithm and applications for structure design. Appl. Math. Comput. 268, 246 (2015)

    MATH  Google Scholar 

  39. Singh, V., Gu, N., Wang, X.: A theoretical framework of a BIM-based multi-disciplinary collaboration platform. Autom. Construct. 20(2), 134 (2011)

    Article  Google Scholar 

  40. Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z., Guan, Z.: A deep learning approach for multi-frame in-loop filter of HEVC. IEEE Trans. Image Process. 28(11), 5663 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ren, J., Zhang, C., Hao, Q.: A theoretical method to evaluate honeynet potency. Future Gener. Comput. Syst. 116, 76 (2021)

    Article  Google Scholar 

  42. Claes, T., Bogaerts, W., Bienstman, P.: Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit. Opt. Express 18(22), 22747 (2010)

    Article  Google Scholar 

  43. Kordestani, H., Zhang, C.: Direct Use of the Savitzky–Golay Filter to Develop an Output-Only Trend Line-Based Damage Detection Method. Sensors 20, 7 (2020)

    Article  Google Scholar 

  44. Chen, Z., Wang, J., Ma, K., Huang, X., Wang, T.: Fuzzy adaptive two-bits-triggered control for nonlinear uncertain system with input saturation and output constraint. Int. J. Adapt. Control Signal Process. 34(4), 543 (2020). https://doi.org/10.1002/acs.3098

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao, C., Liao, J., Zhang, L.: Vernier effect of cascaded dual microring sensor. Pramana 91(6), 81 (2018)

    Article  Google Scholar 

  46. Chao, C.Y., Guo, L.J.: Biochemical sensors based on polymer microrings with sharp asymmetrical resonance. Appl. Phys. Lett. 83(8), 1527 (2003)

    Article  Google Scholar 

  47. Su, B., Wang, C., Kan, Q., Chen, H.: Compact silicon-on-insulator dual-microring resonator optimized for sensing. J. Lightwave Technol. 29(10), 1535 (2011)

    Article  Google Scholar 

  48. La. Notte, M., Passaro, V.M.: Ultra high sensitivity chemical photonic sensing by Mach-Zehnder interferometer enhanced Vernier-effect. Sens. Actuators B Chem. 176, 994 (2013)

    Article  Google Scholar 

  49. Yebo, N.A., Sree, S.P., Levrau, E., Detavernier, C., Hens, Z., Martens, J.A., Baets, R.: Selective and reversible ammonia gas detection with nanoporous film functionalized silicon photonic micro-ring resonator. Opt. Express 20(11), 11855 (2012)

    Article  Google Scholar 

  50. Jiang, X., Ye, J., Zou, J., Li, M., He, J.J.: Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode. Opt. Lett. 38(8), 1349 (2013)

    Article  Google Scholar 

  51. Naznin, S., Sher, M.S.M.: Design of a lithium niobate-on-insulator-based optical microring resonator for biosensing applications. Opt. Eng. 55(8), 087108 (2016)

    Article  Google Scholar 

  52. J.W. et al.: An adaptive neural sliding mode control with ESO for uncertain nonlinear systems. Int. J. Control Autom. Syst. (2020)

  53. Huang, Y., Wang, J., Wang, F., He, B.: Event-triggered adaptive finite-time tracking control for full state constraints nonlinear systems with parameter uncertainties and given transient performance. ISA Trans. 108, 131 (2021)

    Article  Google Scholar 

  54. Hu, J., Zhang, H., Liu, L., Zhu, X., Zhao, C., Pan, Q.: Convergent multiagent formation control with collision avoidance. IEEE Trans. Rob. 36(6), 1805 (2020). https://doi.org/10.1109/TRO.2020.2998766

    Article  Google Scholar 

  55. Yang, X., Lu, Y., Wang, M., Yao, J.: A photonic crystal fiber glucose sensor filled with silver nanowires. Opt. Commun. 359, 279 (2016)

    Article  Google Scholar 

  56. Wang, J., Dai, D.: Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Opt. Lett. 35(24), 4229 (2010)

    Article  Google Scholar 

  57. Dai, D., He, S.: Highly sensitive sensor based on an ultra-high-Q Mach-Zehnder interferometer-coupled microring. JOSA B 26(3), 511 (2009)

    Article  Google Scholar 

  58. Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M., Wang, X.: Ontological knowledge base for concrete bridge rehabilitation project management. Autom. Construct. 121, 103428 (2021)

    Article  Google Scholar 

  59. Xu, S., Wang, J., Shou, W., Ngo, T., Sadick, A.M., Wang, X.: Computer vision techniques in construction: a critical review. Arch. Comput. Methods Eng. 1–15 (2020)

  60. Qian, J., Feng, S., Tao, T., Hu, Y., Li, Y., Chen, Q., Zuo, C.: Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3d shape measurement. APL Photon. 5(4), 046105 (2020)

    Article  Google Scholar 

  61. Ma, H.J., Xu, L.x.: Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory. IEEE Trans. Autom. Control 1–1 (2020). https://doi.org/10.1109/TAC.2020.3014292

  62. Ma, H.J., Yang, G.H., Chen, T.: Event-triggered optimal dynamic formation of heterogeneous affine nonlinear multiagent systems. IEEE Trans. Autom. Control 66(2), 497 (2021). https://doi.org/10.1109/TAC.2020.2983108

    Article  MathSciNet  MATH  Google Scholar 

  63. Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q., Zuo, C.: Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. Opt. Lett. 45(7), 1842 (2020)

    Article  Google Scholar 

  64. Zhang, J., Chen, Q., Sun, J., Tian, L., Zuo, C.: On a universal solution to the transport-of-intensity equation. Opt. Lett. 45(13), 3649 (2020)

    Article  Google Scholar 

  65. Zhang, J., Sun, J., Chen, Q., Zuo, C.: Resolution analysis in a lens-free on-chip digital holographic microscope. IEEE Trans. Comput. Imaging 6, 697 (2020)

    Article  Google Scholar 

  66. Hu, Y., Chen, Q., Feng, S., Zuo, C.: Microscopic fringe projection profilometry: a review. Opt. Lasers Eng. 106192 (2020)

  67. Zuo, C., Chen, Q., Gu, G., Feng, S., Feng, F., Li, R., Shen, G.: High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection. Opt. Lasers Eng. 51(8), 953 (2013)

    Article  Google Scholar 

  68. Huang, H., Huang, M., Zhang, W., Pospisil, S., Wu, T.: Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings. J. Struct. Eng. 146(8), 04020157 (2020)

    Article  Google Scholar 

  69. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Sun, Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X., Zhao, X.: Constraints hindering the development of high-rise modular buildings. Appl. Sci. 10(20), 7159 (2020)

    Article  Google Scholar 

  71. Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M., Wang, X.: Critical review of data-driven decision-making in bridge operation and maintenance. Struct. Infrastruct. Eng. 1–24 (2020)

  72. Xiong, Z.: An equivalent exchange based data forwarding incentive scheme for socially aware networks. J. Signal Process. Syst. 1–15 (2020)

  73. Liu, Y.: Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array. Appl. Sci. 7924 (2020)

  74. Hu, J., Zhang, H., Li, Z., Zhao, C., Xu, Z., Pan, Q.: Object traversing by monocular UAV in outdoor environment. Asian J. Control n/a(n/a)

  75. Gao, N., Guo, X., Deng, J., Cheng, B., Hou, H.: Elastic wave modulation of double-leaf ABH beam embedded mass oscillator. Appl. Acoust. 173, 107694 (2021)

    Article  Google Scholar 

  76. Gao, N., Wang, B., Lu, K., Hou, H.: Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole photonic structure. Appl. Acoust. 177, 107906 (2021)

    Article  Google Scholar 

  77. Khosravian, E., Mashayekhi, H.R., Farmani, A.: Tunable plasmonics photodetector in near-infrared wavelengths using graphene chemical doping method. AEU-Int. J. Electron. Commun. 127, 153472 (2020)

    Article  Google Scholar 

  78. Rabiei, P., Steier, W.H.: Tunable polymer double micro-ring filters. IEEE Photon. Technol. Lett. 15(9), 1255 (2003)

    Article  Google Scholar 

  79. Sirawattananon, C., Bahadoran, M., Ali, J., Mitatha, S., Yupapin, P.P.: Analytical Vernier effects of a PANDA ring resonator for microforce sensing application. IEEE Trans. Nanotechnol. 11(4), 707 (2012)

    Article  Google Scholar 

  80. Mandal, S., Dasgupta, K., Basak, T., Ghosh, S.: A generalized approach for modeling and analysis of ring-resonator performance as optical filter. Opt. Commun. 264(1), 97 (2006)

    Article  Google Scholar 

  81. Chaichuay, C., Yupapin, P.P., Saeung, P.: The serially coupled multiple ring resonator filters and Vernier effect. Optica Applicata 39, 1 (2009)

    Google Scholar 

  82. Passaro, V.M., Troia, B., De. Leonardis, F.: A generalized approach for design of photonic gas sensors based on Vernier-effect in mid-IR. Sens. Actuators B Chem. 168, 402 (2012)

  83. Shenoi, B.A.: Introduction to Digital Signal: Processing and Filter Design. Wiley Online Library (2006)

  84. Bogaerts, W., De. Heyn, P., Van Vaerenbergh, T., De. Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photon. Rev. 6(1), 47 (2012)

    Article  Google Scholar 

  85. DellOlio, F., Passaro, V.M.: Optical sensing by optimized silicon slot waveguides. Opt. Express 15(8), 4977 (2007)

    Article  Google Scholar 

  86. Penadés, J.S., Alonso-Ramos, C., Khokhar, A., Nedeljkovic, M., Boodhoo, L., Ortega-Moñux, A., Molina-Fernández, I., Cheben, P., Mashanovich, G.: Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. Opt. Lett. 39(19), 5661 (2014)

    Article  Google Scholar 

  87. Dai, D.: Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. Opt. Express 17(26), 23817 (2009)

    Article  Google Scholar 

  88. Ma, P., Song, N., Jin, J., Song, J., Xu, X.: Birefringence sensitivity to temperature of polarization maintaining photonic crystal fibers. Opt. Laser Technol. 44(6), 1829 (2012)

    Article  Google Scholar 

  89. La. Notte, M., Troia, B., Muciaccia, T., Campanella, C.E., De. Leonardis, F., Passaro, V.: Recent advances in gas and chemical detection by Vernier effect-based photonic sensors. Sensors 14(3), 4831 (2014)

    Article  Google Scholar 

  90. Komma, J., Schwarz, C., Hofmann, G., Heinert, D., Nawrodt, R.: Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures. Appl. Phys. Lett. 101(4), 041905 (2012)

    Article  Google Scholar 

  91. Niu, Z., Zhang, B., Wang, J., Liu, K., Chen, Z., Yang, K., Zhou, Z., Fan, Y., Zhang, Y., Ji, D., Feng, Y., Liu, Y.: The research on 220GHz multicarrier high-speed communication system. China Commun. 17(3), 131 (2020). (10.23919/JCC.2020.03.011)

    Article  Google Scholar 

  92. Li, D.-T., Ji, D.-F., Liu, Y., Feng, Y.-N., Zhou, T.-C., Zhang, Y.-H., Fan, Y., Niu, Z.-Q., Zhang, B.: J. Zhejiang Univ. Sci. C (2020)

  93. Zhang, B., Ji, D., Fang, D., Liang, S., Fan, Y., Chen, X.: A novel 220-GHz GaN diode on-chip tripler with high driven power. IEEE Electron Device Lett. 40(5), 780 (2019). https://doi.org/10.1109/LED.2019.2903430

    Article  Google Scholar 

  94. Niu, Z., Zhang, B., Zhou, Z., Lixin, A., Wang, Y., Chen, X., He, Y., Hu, Y., Chen, X., Zhang, J.: in 2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT) (2019), pp. 1–2. https://doi.org/10.1109/UCMMT47867.2019.9008340

  95. Wei, Z., Chen, W., Wang, Z., Li, N., Zhang, P., Zhang, M., Zhao, L., Qiang, Q.: High-temperature persistent luminescence and visual dual-emitting optical temperature sensing in self-activated CaNb2O6: Tb3+ phosphor. J. Am. Ceram. Soc. 104(4), 1750 (2021)

    Article  Google Scholar 

  96. Zhao, J., Liu, J., Jiang, J., Gao, F.: Efficient Deployment With Geometric Analysis for mmWave UAV Communications. IEEE Wirel. Commun. Lett. 9(7), 1115 (2020). https://doi.org/10.1109/LWC.2020.2982637

    Article  Google Scholar 

  97. Zhang, C., Wang, H.: Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: theoretical modeling and experimental verification. Struct. Control Health Monit. 27(6), e2534 (2020)

    Article  Google Scholar 

  98. Li, C., Sun, L., Xu, Z., Wu, X., Liang, T., Shi, W.: Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring. Int. J. Struct. Stab. Dyn. 20(06), 2040011 (2020). https://doi.org/10.1142/S0219455420400118

    Article  Google Scholar 

  99. Ma, H., Xu, L., Yang, G.: IEEE Trans. Cybern. 1–16 (2019). https://doi.org/10.1109/TCYB.2018.2889679

  100. Ding, L., Li, S., Gao, H., Liu, Y.J., Huang, L., Deng, Z.: Adaptive neural network-based finite-time online optimal tracking control of the nonlinear system with dead zone. IEEE Trans. Cybern. 51(1), 382 (2021). https://doi.org/10.1109/TCYB.2019.2939424

    Article  Google Scholar 

  101. Ding, L., Li, S., Gao, H., Chen, C., Deng, Z.: IEEE Trans. Syst. Man Cybern. Syst. 50(7), 2512 (2020). https://doi.org/10.1109/TSMC.2018.2819191

    Article  Google Scholar 

  102. Ding, L., Huang, L., Li, S., Gao, H., Deng, H., Li, Y., Liu, G.: Definition and application of variable resistance coefficient for wheeled mobile robots on deformable terrain. IEEE Trans. Rob. 36(3), 894 (2020). https://doi.org/10.1109/TRO.2020.2981822

    Article  Google Scholar 

  103. Zhang, X., Jing, R., Li, Z., Li, Z., Chen, X., Su, C.Y.: Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems. IEEE/CAA J. Autom. Sin. 1–13 (2020). https://doi.org/10.1109/JAS.2020.1003435

  104. J.H. et al.: Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci. China Technol. Sci. 63, 65 (2020)

  105. wen Hu, J., et al.: A survey on multi-sensor fusion based obstacle detection for intelligent ground vehicles in off-road environments. Front. Inf. Technol. Electron. Eng. 21, 675692 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Conflict of interest

We have no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, B., Shabankareh, M.A.G. & Farmani, A. Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer. J Comput Electron 20, 1599–1610 (2021). https://doi.org/10.1007/s10825-021-01726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01726-3

Navigation