Skip to main content
Log in

Immunity to random fluctuations induced by interface trap variability in Si gate-all-around n-nanowire field-effect transistor devices

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The impact of variations in the donor and acceptor interface trap distributions on the fluctuation characteristics of 7-nm-node Si gate-all around n-nanowire FET (n-NWFETs) is analyzed in a hardware-calibrated quantum-corrected three-dimensional (3D) drift–diffusion (DD) numerical simulation framework. Shifting the energy position of the peak in the acceptor trap density distribution (Dit) induces greater surface potential fluctuations and carrier mobility degradation compared with variation of the donor traps. It is found that single-charge traps (SCTs) and random interface traps (RITs) induce larger V\(_{\text {T}}\) and drain-induced barrier lowering (DIBL) variations, along with charge neutrality level (CNL) variations induced by interface trap fluctuations. The Si n-NWFET shows better immunity to interface trap variability when the CNL is located between the midgap and the conduction-band edge. For future sub-7-nm high-performance NWFET logic devices, such interface trap variability will be one of the major sources of random fluctuations at the device level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yeo, K.H., Suk, S.D., Li, M., Yeoh, Y., Cho, K.H., Hong, K., Yun, S., Lee, M.S., Cho, N., Lee, K., Hwang, D., Park, B., Kim, D., Park, D., Ryu, B.: In: 2006 International Electron Devices Meeting, pp. 1–4 (2006). https://doi.org/10.1109/IEDM.2006.346838

  2. Li, Y., Chang, H., Lai, C., Chao, P., Chen, C.: Process variation effect, metal-gate work-function fluctuation and random dopant fluctuation of 10-nm gate-all-around silicon nanowire MOSFET devices. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 34.4.1–34.4.4 (2015). https://doi.org/10.1109/IEDM.2015.7409827

  3. Yoon, J.S., Rim, T., Kim, J., Kim, K., Baek, C.K., Jeong, Y.H.: Process variation effect, metal-gate work-function fluctuation and random dopant fluctuation of 10-nm gate-all-around silicon nanowire MOSFET devices. Appl. Phys. Lett. 106(10), 103507 (2015)

    Article  Google Scholar 

  4. Yoon, J.S., Kim, K., Rim, T., Baek, C.K.: Variability study of Si nanowire FETs with different junction gradients. AIP Adv. 6(1), 015318 (2016)

    Article  Google Scholar 

  5. Brown, A.R., Idris, N.M., Watling, J.R., Asenov, A.: Impact of metal gate granularity on threshold voltage variability: a full-scale three-dimensional statistical simulation study. IEEE Electron Device Lett. 31(11), 1199 (2010). https://doi.org/10.1109/LED.2010.2069080

    Article  Google Scholar 

  6. Matsukawa, T., Liu, Y., Mizubayashi, W., Tsukada, J., Yamauchi, H., Endo, K., Ishikawa, Y., Ota, H., Migita, S., Morita, Y.: et al., Suppressing V t and G m variability of FinFETs using amorphous metal gates for 14 nm and beyond. In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 8–2. IEEE (2012)

  7. Sudarsanan, A., Venkateswarlu, S., Nayak, K.: Impact of fin line edge roughness and metal gate granularity on variability of 10-nm node SOI n-FinFET. IEEE Trans. Electron Devices (2019). https://doi.org/10.1109/TED.2019.2941896

    Article  Google Scholar 

  8. Sudarsanan, A., Venkateswarlu, S., Nayak, K.: Superior work function variability performance of horizontally stacked nanosheet FETs for sub-7-nm technology and beyond. In: 2020 4th IEEE Electron Devices Technology and Manufacturing Conference (EDTM), pp. 1–4. IEEE (2020). https://doi.org/10.1109/EDTM47692.2020.9117974

  9. Baravelli, E., Jurczak, M., Speciale, N., Meyer, K.D., Dixit, A.: Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans. Nanotechnol. 7(3), 291 (2008). https://doi.org/10.1109/TNANO.2008.917838

    Article  Google Scholar 

  10. Yoon, J., Kim, K., Rim, T., Baek, C.: Performance and variations induced by single interface trap of nanowire FETs at 7-nm node. IEEE Trans. Electron Devices 64(2), 339 (2017). https://doi.org/10.1109/TED.2016.2633970

    Article  Google Scholar 

  11. Mensch, P., Moselund, K.E., Karg, S., Lörtscher, E., Björk, M.T., Riel, H.: Interface state density of single vertical nanowire MOS capacitors. IEEE Trans. Nanotechnol. 12(3), 279 (2013). https://doi.org/10.1109/TNANO.2013.2248164

    Article  Google Scholar 

  12. Cassé, M., Tachi, K., Thiele, S., Ernst, T.: Spectroscopic charge pumping in Si nanowire transistors with a high-\(\kappa\)/metal gate. Appl. Phys. Lett. 96(12), 123506 (2010)

    Article  Google Scholar 

  13. Najam, F., Yu, Y.S., Cho, K.H., Yeo, K.H., Kim, D., Hwang, J.S., Kim, S., Hwang, S.W.: Interface trap density of gate-all-around silicon nanowire field-effect transistors with TiN gate: extraction and compact model. IEEE Trans. Electron Devices 60(8), 2457 (2013). https://doi.org/10.1109/TED.2013.2268193

    Article  Google Scholar 

  14. Kim, B., Bae, D., Zeitzoff, P., Sun, X., Standaert, T.E., Tripathi, N., Scholze, A., Oldiges, P.J., Guo, D., Shang, H., Seo, K.: Investigation of fixed oxide charge and fin profile effects on bulk FinFET device characteristics. IEEE Electron Device Lett. 34(12), 1485 (2013). https://doi.org/10.1109/LED.2013.2285914

    Article  Google Scholar 

  15. Li, Q., Xiong, H.D., Liang, X., Zhu, X., Gu, D., Ioannou, D.E., Baumgart, H., Richter, C.A.: Self-assembled nanowire array capacitors: capacitance and interface state profile. Nanotechnology 25(13), 135201 (2014)

    Article  Google Scholar 

  16. Qiu, Y., Wang, R., Huang, Q., Huang, R.: A comparative study on the impacts of interface traps on tunneling FET and MOSFET. IEEE Trans. Electron Devices 61(5), 1284 (2014). https://doi.org/10.1109/TED.2014.2312330

    Article  Google Scholar 

  17. Sze, S., Ng, K.: Physics of Semiconductor Devices. Wiley (2006). https://books.google.co.in/books?id=o4unkmHBHb8C

  18. Kola, S.R., Li, Y., Thoti, N.: Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps. J. Comput. Electron. 19(1), 253 (2020)

    Article  Google Scholar 

  19. Campbell, J., Lenahan, P.M.: Density of states of P b1 Si/SiO2 interface trap centers. Appl. Phys. Lett. 80(11), 1945 (2002). https://doi.org/10.1063/1.1461053

    Article  Google Scholar 

  20. Bangsaruntip, S., Cohen, G.M., Majumdar, A., Zhang, Y., Engelmann, S.U., Fuller, N.C.M., Gignac, L.M., Mittal, S., Newbury, J.S., Guillorn, M., Barwicz, T., Sekaric, L., Frank, M.M., Sleight, J.W.: High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424364

  21. 2018 IEEE International Roadmap for Devices and Systems (IRDS). https://irds.ieee.org/roadmap-2018

  22. Synopsys Inc., Mountain View, CA, USA, Sentaurus Device User Guide, l-2019.03 edn. (2019)

  23. El Sayed, K., Wettstein, A., Simeonov, S.D., Lyumkis, E., Polsky, B.: Investigation of the statistical variability of static noise margins of SRAM cells using the statistical impedance field method. IEEE Trans. Electron Devices 59(6), 1738 (2012). https://doi.org/10.1109/TED.2012.2189860

    Article  Google Scholar 

  24. El Sayed, K., Lyumkis, E., Wettstein, A.: Modeling statistical variability with the impedance field method. In: Proceedings of the International Conference on Simulation Semiconductor Process. Devices (SISPAD), pp. 205–208 (2012)

Download references

Acknowledgements

The authors would like to thank the Electron Devices Research (EDR) group of the Electrical Engg. Dept. of IITH for valuable discussion and suggestions. This research work has been supported by the Visvesvaraya PhD Scheme, MeitY, Govt.of India, MEITY-PHD-853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhil Sudarsanan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudarsanan, A., Nayak, K. Immunity to random fluctuations induced by interface trap variability in Si gate-all-around n-nanowire field-effect transistor devices. J Comput Electron 20, 1169–1177 (2021). https://doi.org/10.1007/s10825-021-01692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01692-w

Keywords

Navigation