Skip to main content
Log in

A terabit-per-second all-optical four-bit digital-to-analog converter using quantum dot semiconductor optical amplifiers

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An all-optical digital-to-analog converter (DAC) using quantum dot semiconductor optical amplifiers (QDSOAs) is proposed and analyzed. The device operates at low optical power (~ 0.5 mW) at a speed of 1 Tbps. The resolution of the DAC is four bits, and the corresponding step size is 1.068 mW (compared with the ideal value of 1 mW). The dynamic range is found to be 11.47 dB (versus the ideal value of 11.76 dB). The average absolute error for all the states of the proposed optical DAC is 0.53%, with a maximum error of 1.85%, being the first time that such performance has been achieved to the best of the authors’ knowledge. It is shown that the amplified spontaneous emission (ASE) noise has no significant effect on the performance of the DAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anil, K.M.: Digital Electronics Principles, Devices and Applications, Ch 12. Wiley, Hoboken (2007)

    Google Scholar 

  2. Xin, H., Kong, D., Zhang, K., Jia, S., Zhang, X., Hu, W., Hu, H.: Detection by photonic aided digital- to- analog converter and linear equalization. J. Lightw. Technol. (2019). https://doi.org/10.1109/JLT.2020.2966548

    Article  Google Scholar 

  3. Ding, J., et al.: Optical digital to analog converter based on microring switches. IEEE Photon. Technol. Lett. 26(20), 2066–2069 (2014). https://doi.org/10.1109/LPT.2014.2346958

    Article  Google Scholar 

  4. Zhang, T., Qiu, Q., Fan, Z., Su, J., Xu, M.: Experimental study on a 4-b serial optical digital to analog convertor. IEEE Photon. J. 10(2), 1–9 (2018). https://doi.org/10.1109/JPHOT.2018.2818126

    Article  Google Scholar 

  5. Geng, X., Zhao, L.: All-optical analog to digital converter based on nonlinear photonic crystal ring resonators. Photon. Nanostruct. Fundam. Appl. (2020). https://doi.org/10.1016/j.photonics.2020.100817(2020)

    Article  Google Scholar 

  6. Moniem, T.A., El-Din, E.S.: Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals. Opt. Commun. 402(1), 36–40 (2017)

    Article  Google Scholar 

  7. Indira Gandhi, S., Sridarshini, T.: Design of photonic crystal based optical digital to analog converters. Laser Phys. 29, 046206 (2019)

    Article  Google Scholar 

  8. Schmidt, C., Kottke, C., et al.: Digital-to-analog converters for high-speed optical communications using frequency interleaving: impairments and characteristics. Opt. Express 26, 6 (2018)

    Google Scholar 

  9. Zhang, F., Gao, B., Ge, X., Pan, S.: Simplified 2-bit photonic digital-to-analog conversion unit based on polarization multiplexing. Opt. Eng. 55(3), 031115 (2016)

    Article  Google Scholar 

  10. Scaffardi, M., Lazzeri, E., Fresi, F., Poti, L., Bogoni, A.: Analog-to-digital conversion exploiting XGM in SOA-based modular blocks. In: LEOS 2008—21st Annual Meeting of the IEEE Lasers and Electro-Optics Society, Acapulco, 2008, pp. 735–736. https://doi.org/10.1109/LEOS.2008.4688830.

  11. Okada, T., Ohtsuki, T., Kobayashi, R., Matsuura, M.: Photonic digital-to-analog conversion based on blue chirp spectral slicing using a quantum-dot SOA. In: 2019 24th Optoelectronics and Communications Conference (OECC) and 2019 International Conference on Photonics in Switching and Computing (PSC), Fukuoka, Japan, 2019, pp. 1–3. https://doi.org/10.23919/PS.2019.8818023.

  12. Komatsu, K., Hosoya, G., Yashima, H.: All Optical NOR gate using a single quantum dot SOA assisted an optical filter. Opt. Quant. Electron. 50(131), 1–18 (2018)

    Google Scholar 

  13. Yousefabad, H.G., Matloub, S., Rostami, A.: Ultra-broadband optical gain engineering in solution-processed QD-SOA based on superimposed quantum structure. Sci. Rep. 9, 12919 (2019). https://doi.org/10.1038/s41598-019-49369-6

    Article  Google Scholar 

  14. Liu, S., Tong, Y., Norman, J., Dumont, M., Gossard, A., Tsang, H.K., Bowers, J.: High efficiency, high gain and high saturation output power quantum dot SOAs grown on Si and applications. In: Optical Fiber Communication Conference (OFC) 2020, OSA Technical Digest (Optical Society of America, 2020), paper T4H.3

  15. Dimitradou, E., Zoiros, K.E.: All-optical XOR gate using single quantum-dot SOA and optical filter. J. Lightw. Technol. 31(23), 3013–3021 (2013)

    Google Scholar 

  16. Salehi, M.R., Taherian, S.F.: Performance analysis of high speed all optical Subtractor using a quantum dot semiconductor optical amplifier based Mach Zehnder amplifier. J. Opt. Soc. Korea 18(1), 65–70 (2014)

    Article  Google Scholar 

  17. Mi, S.C., Wang, H.L., Zhang, S.Y., Gong, Q.: Research of all optical NAND gates based on quantum dot semiconductor optical amplifiers cascaded connection XGM and XPM. Optik 202, 163551 (2020)

    Article  Google Scholar 

  18. Kotb, A., Guo, C.: All optical NOR and XNOR logic gates at 2 Tb/s based on two photon absorption in quantum dot semiconductor optical amplifiers. J. Opt. Quant. Electron 52(30), 1–19 (2020). https://doi.org/10.1007/s11082-019-2142-z

    Article  Google Scholar 

  19. Tocci, R.J.: Digital Systems, 6th edn. PHI, New Delhi (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousik Mukherjee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, K. A terabit-per-second all-optical four-bit digital-to-analog converter using quantum dot semiconductor optical amplifiers. J Comput Electron 20, 1270–1276 (2021). https://doi.org/10.1007/s10825-021-01675-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01675-x

Keywords

Navigation