Skip to main content
Log in

Microstrip sensor for product quality monitoring

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this work, we investigated the feasibility of using a microstrip sensor to monitor milk quality. The proposed microstrip sensor is composed of two symmetrical and independent rectangular microstrip patches. This method is based on a shift in the resonance frequency of the microstrip resonator caused by a change in the dielectric constant of the analysed milk. Simulations and measurements were performed in the study. The results indicate the effectiveness of the proposed microstrip patch in product quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Milk, F. A. O.: Dairy Products in Human Nutrition: Questions and answers. Food and Agriculture Organization (2012).

  2. Muehlhoff, E., Bennett, A., MacMahon, D.: Milk and Dairy Products in Human Nutrition. Food and Agriculture Organization of the United Nations, Rome (2013)

    Google Scholar 

  3. Murthy, V.J., Kiranmai, N.S., Kumar, S.: Study of dielectric properties of adulterated milk concentration and freshness. IOP Conf. Ser. Mater.: Sci. Eng. 225(1), 012285 (2017)

    Google Scholar 

  4. Handford, C.E., Campbell, K., Elliott, C.T.: Impacts of milk fraud on food safety and nutrition with special emphasis on developing countries. Comprehensive Reviews in Food Science and Food Safety 15(1), 130–142 (2016)

    Article  Google Scholar 

  5. Parry-HansonKunadu, A., Holmes, M., Miller, E.L., Grant, A.J.: Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Int. J. Food Microbiol. 277, 41–49 (2018)

    Article  Google Scholar 

  6. Clerjob, S., Damez, J. Les capteurs électromagnétiques et l’industrie agroalimentaire: Des outils pour le contrôle des proceeds (2001)

  7. Zhang, X., Ruan, C., ulHaq, T. & Chen, K., : High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors (Basel) 19(4), 787 (2019)

    Article  Google Scholar 

  8. Ahi, A.M., Yousefi, J., Najafabadi, M.A., Esmaeilzare, A., Oskouei, A.R.: Residual stress evaluation in friction stir-welded aluminum plates using finite element method and acoustic emission. J. Mater. Sci. 52(4), 2103–2116 (2017)

    Article  Google Scholar 

  9. Lu, T., Chen, J.: Research of Penetration Testing Technology in Docker Environment, in Proc. 5th Int. Conf. Mechatronics, Mater., Chem. Comput. Eng. (ICMMCCE), 1354–1359, Sep. (2017)

  10. Arenas, M.P., Rocha, T.J., Angani, C.S., Ribeiro, A.L., Ramos, H.G., Eckstein, C.B., Rebello, J.M.O., Pereira, G.R.: Novel austenitic steel ageing classification method using eddy current testing and a support vector machine. Measurement 127, 98–103 (2018)

    Article  Google Scholar 

  11. Wagner, D.R., Thompson, B.J., Anderson, D.A., Schwartz, S.: A-mode and B-mode ultrasound measurement of fat thickness: a cadaver validation study. Eur. J. Clin. Nutr. 73(4), 518–523 (2018)

    Article  Google Scholar 

  12. Wei, G., Han, S., Wang, H., He, L., Wang, Y., Wu, M., Chen, D.: Experience of the indirect neutron radiography method based on the x-ray imaging plate at CARR. Physics Procedia 69, 258–264 (2015)

    Article  Google Scholar 

  13. Kharkovsky, S., Zoughi, R.: Microwave and millimeter wave nondestructive testing and evaluation—overview and recent advances. IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007)

    Article  Google Scholar 

  14. Nkordeh, N., Idachaba, F.E., Oni, O.O.: Microstrip patch antenna: comparing performance of a rectangular and a circular patch at LTE bluetooth and GSM frequencies. In: Proceedings of the World Congress on Engineering, July 1–3 2015, London, UK (2015)

  15. Majumder, A.: Rectangular microstrip patch antenna using coaxial probe feeding technique to operate in S-band. Int. J. Eng. Trends Technol. 4(4), 1206–1210 (2013)

    Google Scholar 

  16. Amir, M., Bedra, S., Benkouda, S., Fortaki, T.: New formula for the calculation of the resonant frequency of double layer circular patch based on cavity model and genetic algorithm (GA). In: Première ConférenceNationale sur les Télécommunications, CNT2012, 11–12 November, 2012, Guelma, Algeria (2012)

  17. Wolff, I., Knoppik, N.: Rectangular and circular microstrip disk capacitors and resonators. IEEE Trans. MlT 22(10), 857–864 (1974)

    Google Scholar 

  18. Verma, A.K., Rostamy, Z.: Modified Wolff model for resonance frequency of covered rectangular microstrip patch antenna. Electron. Lett. 27(20), 1850–1852 (1991)

    Article  Google Scholar 

  19. Wheeler, H.A.: Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans. Microw. Theory Tech. 13(2), 172–185 (1965)

    Article  Google Scholar 

  20. https://itis.swiss/virtual-population/tissue properties/database

  21. Hilhorst, M.A.: A pore water conductivity sensor. J. Soil Sci. Soc. Am. 64(6), 1922–1925 (2000)

    Article  Google Scholar 

  22. Matsuzaki, R., Todoroki, A.: Passive wireless strain monitoring of actual tires using capacitance–resistance change and multiple spectral features. Sens. Actuators A 126(2), 277–286 (2006)

    Article  Google Scholar 

  23. Fortaki, T., Djouane, L., Chebara, F., Benghalia, A.: Radiation of a rectangular microstrip patch antenna covered with a dielectric layer. Int. J. Electron. 95(9), 989–998 (2008)

    Article  Google Scholar 

  24. Bahl, I., Bhartia, P., Stuchly, S.: Design of microstrip antennas covered with a dielectric layer. IEEE Trans. Antennas Propag. 30(2), 314–318 (1982)

    Article  Google Scholar 

  25. Agranovich, D., Renhart, I., Ishai, P.B., Katz, G., Bezman, D., Feldman, Y.: A microwave sensor for the characterization of bovine milk. Food Control 63, 195–200 (2016)

    Article  Google Scholar 

  26. Mabrook, M.F., Petty, M.C.: A novel technique for the detection of added water to full fat milk using single frequency admittance measurements. Sens. Actuators B: Chem. 96(1–2), 215–218 (2003)

    Article  Google Scholar 

  27. Alsager, A.F.: Design and Analysis of Microstrip Patch Antenna Arrays. MSc thesis, University College of Borås, Sweden, 80 pp (2011)

Download references

Acknowledgements

The authors wish to thank Soufiane Tebache and Dr. Mansoul Ali for their assistance with the PNA measurements and the participant test subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Amar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amar, H., Ghodbane, H., Amir, M. et al. Microstrip sensor for product quality monitoring. J Comput Electron 19, 1329–1336 (2020). https://doi.org/10.1007/s10825-020-01517-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01517-2

Keywords

Navigation