Skip to main content
Log in

The effects of lead–ring coupling and the external Rashba interaction on the effective spin polarization of a chain of quantum nano rings

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The effective spin polarization and spin filtering of a linear chain of N one-dimensional nanorings in the presence of the Rashba and Aharonov–Bohm effects are studied by considering three different lead–ring coupling regimes. Utilizing the transfer-matrix method, the optimal number of rings for maximizing the system efficiency is determined in the weak, medium, and strong lead–ring coupling regimes. The strong coupling regime is proposed for the design of spintronic devices as it exhibits the highest system efficiency. Furthermore, by tuning the Rashba strengths in the rings alternately, perfect spin filtering and full-range spin polarization with high efficiency can be obtained in narrow ranges of the incident electron wavenumber. Moreover, controlling the Rashba strength leads to the design of energy-filtering devices with a desired spin polarization, which could play a dominant role in spintronic technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frustaglia, D., Richte, K.: Spin interference effects in ring conductors subject to Rashba coupling. Phys. Rev. B 69, 235310 (2004)

    Google Scholar 

  2. Zarenia, M., Pereira, J.M., Peeters, F.M., Farias, G.A.: Electrostatically confined quantum rings in bilayer graphene. Nano Lett. 9, 4088–4092 (2009)

    Google Scholar 

  3. Zivkovic, M., Jääskeläinen, M., Djuric, I.: Sagnac rotational phase shifts in a mesoscopic electron interferometer with spin–orbit interactions. Phys. Rev. B 77, 115306 (2008)

    Google Scholar 

  4. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–488 (1959)

    MathSciNet  MATH  Google Scholar 

  5. Aharonov, Y., Casher, A.: Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–323 (1984)

    MathSciNet  Google Scholar 

  6. Földi, P., Molnar, B., Benedict, M.G., Peeters, F.M.: Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction. Phys. Rev. B 71, 033309 (2005)

    Google Scholar 

  7. Zipper, E., Kurpas, M., Maska, M.: Wave function engineering in quantum dot–ring nanostructures. New J. Phys. 14, 093029 (2012)

    Google Scholar 

  8. Hedin, E.R., Joe, Y.S.: Sensitive spin-polarization effects in an Aharonov–Bohm double quantum dot ring. J. Appl. Phys. 110, 026107 (2011)

    Google Scholar 

  9. Nitta, J., Meijer, F.E., Takayanagi, H.: Spin-interference device. Appl. Phys. Lett. 75, 695–697 (1999)

    Google Scholar 

  10. Tang, H.Z., Zhai, L.X., Liu, J.J.: Spin transport properties of polygonal quantum ring with Rashba spin–orbit coupling. J. Appl. Phys. 114, 023702 (2013)

    Google Scholar 

  11. Földi, P., Kálmán, O., Benedict, M.G., Peeters, F.M.: Networks of quantum nanorings: programmable spintronic devices. Nano Lett. 8, 2556–2558 (2008)

    Google Scholar 

  12. Govorov, A., Ulloa, S.E., Karrai, K., Warburton, R.J.: Polarized excitons in nanorings and the optical Aharonov–Bohm effect. Phys. Rev. B 66, 081309 (2002)

    Google Scholar 

  13. Warburton, R.J., et al.: Optical emission from a charge-tunable quantum ring. Nature 405, 926 (2000)

    Google Scholar 

  14. Young, R., et al.: Optical observation of single-carrier charging in type-II quantum ring ensembles. Appl. Phys. Lett. 100, 082104 (2012)

    Google Scholar 

  15. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Google Scholar 

  16. Nitta, J., Akazaki, T., Takayanagi, H., Enoki, T.: Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335 (1997)

    Google Scholar 

  17. Citro, R., Romeo, F., Marinaro, M.: Zero-conductance resonances and spin filtering effects in ring conductors subject to Rashba coupling. Phys. Rev. B 74, 115329 (2006)

    Google Scholar 

  18. Eslami, L., Faizabadi, E., Ahmadi, S.: Quantum nano ring composed of quantum dots as a source of pure persistent spin or charge current. Phys. Lett. A 380, 3854–3860 (2016)

    Google Scholar 

  19. Fuhrer, A., et al.: Energy spectra of quantum rings. Microelectron. Eng. 63, 47–52 (2002)

    Google Scholar 

  20. Timm, R., et al.: Self-organized formation of GaSb/GaAs quantum rings. Phys. Rev. Lett. 101, 256101 (2008)

    Google Scholar 

  21. Timm, R., et al.: Confined states of individual type-II GaSb/GaAs quantum rings studied by cross-sectional scanning tunneling spectroscopy. Nano Lett. 10, 3972–3977 (2010)

    Google Scholar 

  22. Tserkovnyak, Y., Brataas, A.: Spin transport in mesoscopic rings with inhomogeneous spin-orbit coupling. Phys. Rev. B 76, 155326 (2007)

    Google Scholar 

  23. Zhai, L.X., An, Z.: Spin-dependent transport in four-terminal rings in the presence of the Rashba spin–orbit coupling. Phys. Lett. A 383, 2813–2820 (2019)

    MathSciNet  Google Scholar 

  24. Ling, H., et al.: Characteristics of In (Ga) As quantum ring infrared photodetectors. J. Appl. Phys. 105, 034504 (2009)

    Google Scholar 

  25. Liu, D.Y., Xia, J.B.: Spin polarization in one dimensional ring with Rashba spin–orbit interaction. J. Appl. Phys. 115, 044313 (2014)

    Google Scholar 

  26. Földi, P., et al.: Quantum rings as electron spin beam splitters. Phys. Rev. B 73, 155325 (2006)

    Google Scholar 

  27. Zhai, L.X., Wang, Y., An, Z.: Effects of Zeeman splitting on spin transportation in a three-terminal Rashba ring under a weak magnetic field. AIP Adv. 8, 055120 (2018)

    Google Scholar 

  28. Shelykh, I., et al.: Interplay of h/e and h/2e oscillations in gate-controlled Aharonov–Bohm rings. Phys. Rev. B 71, 113311 (2005)

    Google Scholar 

  29. Saeedi, S., Faizabadi, E.: Quantum rings as a perfect spin-splitter and spin-filter by using the Rashba effect. Eur. Phys. J. B 89, 70086 (2016)

    Google Scholar 

  30. Naeimi, A.S., Eslami, L., Esmaeilzadeh, M., Abolhassani, M.R.: Spin transport properties in a double quantum ring with Rashba spin–orbit interaction. J. Appl. Phys. 113, 014303 (2013)

    Google Scholar 

  31. Dehghan, E., Khoshnoud, D.S., Naeimi, A.S.: Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin–orbit interaction. Physica E 100, 13869477 (2018)

    Google Scholar 

  32. Meije, F.E., Morpurgo, A.F., Klapwijk, T.M.: One-dimensional ring in the presence of Rashba spin–orbit interaction: derivation of the correct Hamiltonian. Phys. Rev. B 66, 033107 (2002)

    Google Scholar 

  33. Molnar, B., Peeters, F.M., Vasilopoulos, P.: Spin-dependent magnetotransport through a ring due to spin–orbit interaction. Phys. Rev. B 69, 155335 (2004)

    Google Scholar 

  34. Shelykh, I.A., Galkin, N.G., Bagraev, N.T.: Quantum splitter controlled by Rasha spin–orbit coupling. Phys. Rev. B 72, 235316 (2005)

    Google Scholar 

  35. Lorke, A., et al.: Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223 (2000)

    Google Scholar 

  36. Vasilopoulos, P., Kalman, O., Peeters, F.M., Benedict, G.: Aharonov–Bohm oscillations in a mesoscopic ring with asymmetric arm-dependent injection. Phys. Rev. B 75, 035304 (2007)

    Google Scholar 

  37. Faizabadi, E., Najafi, A.: Energy dependent spin filtering by using Fano effect in open quantum rings. Solid State Commun. 150, 1404 (2010)

    Google Scholar 

  38. Fallah, F., Esmaeilzadeh, M.: Spin transport in a quantum ring in the presence of Rashba spin–orbit interaction using the S-matrix method. J. Appl. Phys. 111, 043717 (2012)

    Google Scholar 

  39. Naeimi, A.S., Eslami, L., Esmaeilzadeh, M.: A wide range of energy spin-filtering in a Rashba quantum ring using S-matrix method. J. Appl. Phys. 113, 044316 (2013)

    Google Scholar 

  40. Pareek, T.P.: Pure spin currents and the associated electrical voltage. Phys. Rev. Lett. 92, 076601 (2004)

    Google Scholar 

  41. Molnar, B., Vasilopoulos, P., Peeters, F.M.: Spin-dependent transmission through a chain of rings: influence of a periodically modulated spin–orbit interaction strength or ring radius. Appl. Phys. Lett. 85, 612 (2004)

    Google Scholar 

  42. Molnar, B., Vasilopoulos, P., Peeters, F.M.: Magnetoconductance through a chain of rings with or without periodically modulated spin–orbit interaction strength and magnetic field. Phys. Rev. B 72, 075330 (2005)

    Google Scholar 

  43. Lan, H., Ding, Y.: Ordering, positioning and uniformity of quantum dot arrays. Nano Today 7, 94 (2012)

    Google Scholar 

  44. Datta, S.: Electronic Transport in Mesoscopic Systems, pp. 94–116. Cambridge University Press, Cambridge (1995)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Iran University of Science and Technology Grant No. 160/17902. S.S. is grateful to Nastaran Esfahani for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this paper.

Corresponding author

Correspondence to Edris Faizabadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, S., Faizabadi, E. The effects of lead–ring coupling and the external Rashba interaction on the effective spin polarization of a chain of quantum nano rings. J Comput Electron 19, 884–893 (2020). https://doi.org/10.1007/s10825-020-01479-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01479-5

Keywords

Navigation