Skip to main content
Log in

RETRACTED ARTICLE: An analytical model for the effects of the variation of ferroelectric material parameters on the minimum subthreshold swing of NC-FETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

This article was retracted on 31 December 2020

This article has been updated

Abstract

The relationships between the coercive field (E C), remanent polarization (P 0), and thickness (t FE) of a ferroelectric material are derived analytically to determine the minimum subthreshold swing (S min) of a negative-capacitance field-effect transistor (NC-FET). The interdependence of the ferroelectric material properties is defined based on the capacitance matching condition in the subthreshold region of the NC-FET. An optimized combination of the parameters of the ferroelectric material in a gate stack is proposed to achieve transfer characteristics without hysteresis as well as lower subthreshold swing. The results are validated against numerical and experimental results available in literature. Furthermore, the minimum possible subthreshold swing (S min) is obtained for different ferroelectric materials used in the gate stack of an NC-FET in the context of a manufacturable semiconductor technology. The channel doping, ferroelectric thickness, and minimum subthreshold are calculated for five different ferroelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 31 December 2020

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1007/s10825-020-01640-0.

References

  1. Salahuddin, S., Datta, S.: Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8(2), 405–410 (2008)

    Article  Google Scholar 

  2. Khan, A.I., Bhowmik, D., Yu, P., et al.: Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Appl. Phys. Lett. 99(11), 113501 (2011)

    Article  Google Scholar 

  3. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  4. Gopalakrishnan, K., Woo, R., Jungemann, C., et al.: Impact ionization MOS (I-MOS) —Part I: device and circuit simulation. IEEE Trans. Electron Devices 52(1), 69–76 (2005)

    Article  Google Scholar 

  5. Devonshire, A.F.: Theory of ferroelectrics. Adv. Phys. 3(10), 85–130 (1954)

    Article  Google Scholar 

  6. Rabe, K. M., Ahn, C. H., Triscone, J. M.: Physics of ferroelectrics: a modern perspective. Berlin (2007)

  7. Ginzburg, V.L.: Phase transitions in ferroelectrics: some historical remarks. UFN 171(10), 1091–1097 (2001)

    Article  Google Scholar 

  8. Rusu, A., Salvatore, G. A., Jimenez, D., Ionescu, A. M.: Metal-ferroelectric-metal-oxide semiconductor field effect transistor with Sub-60 mV/decade subthreshold swing and voltage amplification. IEEE Int. Electron Devices Meet. 16.3.1–16.3.4 (2010)

  9. Taur, Y., Ning, T., Fundamentals of Modern VLSI Device. Cambridge (1998)

  10. Rasool, R., Rather, G.M., Najeeb-ud-Din: Analytic model for the electrical properties of negative capacitance metal-ferroelectric-insulator-silicon (MFIS) capacitor. Integr. Ferroelectr. 185, 93–101 (2017)

    Article  Google Scholar 

  11. Jain, A., Alam, M.A.: Prospects of hysteresis free abrupt switching (0 mV/decade) in Landau switches. IEEE Trans. Electron Devices 60(12), 4269–4276 (2013)

    Article  Google Scholar 

  12. Khan, A. I., Yeung, C.W., Hu C., Salahuddin, S.: Ferroelectric negative capacitance MOSFET: capacitance tuning & antiferroelectric operation. IEEE Int. Electron Devices Meet. 11.3.1–11.3.4 (2011)

  13. Seeger, J.I., Crary, S.B.: Analysis and simulation of MOS capacitor feedback for stabilizing electrostatically actuated mechanical devices. Trans. Built. Environ. 31(13), 199–208 (1997)

    Google Scholar 

  14. Krowne, C.M., Kirchoefer, S.W., Chang, W., et al.: Examination of possibility of negative capacitance using ferroelectric materials in solid state electronic devices. Nanoletters 11(3), 988–992 (2011)

    Article  Google Scholar 

  15. Jain, A., Alam, M.A.: Stability constraints define the minimum subthreshold swing of a negative capacitance field-effect transistor. IEEE Trans. Electron Devices 61(7), 2235–2242 (2014)

    Article  Google Scholar 

  16. Jiménez, D., Miranda, E., Godoy, A.: Analytic model for the surface potential and drain current in negative capacitance field-effect transistors. IEEE Trans. Electron Devices 57(10), 2405–2409 (2010)

    Article  Google Scholar 

  17. Pierret R. F. Semiconductor Device Fundamentals. Pearson, 1995

  18. You, W.X., Tsai, C.P., Su, P.: Short channel effects in 2D negative-capacitance field effect transistors. IEEE Trans. Electron Devices 65(4), 1604–1610 (2018)

    Article  Google Scholar 

  19. Lee, H., Yoon, Y., Shin, C.: Current voltage model for negative capacitance field effect transistors. IEEE Electron Device Lett. 38(5), 669–672 (2017)

    Article  Google Scholar 

  20. Lin, C.I., Khan, A.I., Salahuddin, S., Hu, C.: Effects of the variation of ferroelectric properties on negative capacitance FET characteristics. IEEE Trans. Electron Devices 63(5), 2197–2199 (2016)

    Article  Google Scholar 

  21. Dasgupta, D., Rajashekhar, A., Majumdar, K., et al.: Sub-KT/Q switching in strong inversion in PbZr0.52Ti0.48O3 gated negative capacitance FETs. IEEE J. Explor. Solid State Comput. Devices Circ. 1, 43–48 (2015)

    Google Scholar 

  22. Cano, A., Jimenez, D.: Multidomain ferroelectricity as a limiting factor for voltage amplification in ferroelectric field-effect transistors. Appl. Phys. Lett. 97(13), 133509 (2010)

    Article  Google Scholar 

  23. Boscke, T. S., Muller, J.,Bruhaus, D., et al.: Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. IEEE Int. Electron Devices Meet. 24.5.1–25.5.4 (2011)

  24. Li, Y., Lian, Y., Yao, K., et al.: Evaluation and optimization of short channel ferroelectric MOSFET for low power circuit application with BSIM4 and Landau theory. Solid State Electron. 114, 17–22 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheela Rasool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1007/s10825-020-01640-0

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasool, R., Najeeb-ud-Din & Rather, G.M. RETRACTED ARTICLE: An analytical model for the effects of the variation of ferroelectric material parameters on the minimum subthreshold swing of NC-FETs. J Comput Electron 18, 1207–1213 (2019). https://doi.org/10.1007/s10825-019-01395-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01395-3

Keywords

Navigation