Skip to main content
Log in

Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A temperature-dependent delay optimization model for a multilayered graphene nanoribbon (MLGNR) with top contact (TC-GNR), side contact (SC-GNR), and Cu-based nano-interconnects using a wire sizing method was applied to determine the delay for different interconnects widths (11 nm, 16 nm, and 22 nm) and lengths (10 μm, 50 μm, and 100 μm), being the first such model for TC-GNR, SC-GNR, and Cu interconnects applied at three different chip operating temperatures (233 K, 300 K, and 378 K). The results reveal that the SC-GNR requires ~ 3–6× and ~ 2–3× fewer repeaters w.r.t. the TC-GNR or Cu interconnect, and that the SC-GNR and Cu interconnects can achieve ~ 4–5× and ~ 2–2.5× reduction in repeater dimension compared with the TC-GNR interconnect. Meanwhile, the SC-GNR interconnect can achieve 73× less propagation delay w.r.t. the TC-GNR interconnect for interconnect width of 22 nm, interconnect length of 10 μm, and two different chip operating temperatures of 233 K and 300 K. Similarly, the Cu interconnect can achieve 6× less propagation delay w.r.t. the TC-GNR interconnect at interconnect width of 22 nm and 16 nm, interconnect length of 10 μm, and 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Fuchs, K.: Conduction electrons in thin metallic films. Proc. Camb. Phil. Soc. 34, 100 (1938)

    Article  Google Scholar 

  2. Sondheimer, E. H.: The MFP of electron in metals. In: Advance in Physics, vol 1(1), pp. 1–42. Taylor & Francis, Routledge (1952)

  3. Mayaddas, A.F., Shatzke, M.: Electrical resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces. Phys. Rev. B 1(4), 1382–1389 (1970)

    Article  Google Scholar 

  4. Naeemi, A., Meindll, J.D.: Performance benchmarking for graphene nanoribbon, carbon nanotube, and Cu interconnects. In: IITC, pp. 183–185 (2008)

  5. Naeemi, A., Meindl, J.D.: Compact physics-based circuit model for GNR interconnect. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)

    Article  Google Scholar 

  6. Naeemi, A., Meindl, J.D.: Conductance modeling for GNR interconnect. IEEE Electron Device Lett. 28(5), 428–431 (2007)

    Article  Google Scholar 

  7. Chuan, X., Hong, L., Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Device 56(8), 1567–1578 (2009)

    Article  Google Scholar 

  8. Nasiri, S.H., Farshi, M.K.M., Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Device Lett. 31(12), 1458–1460 (2010)

    Article  Google Scholar 

  9. Tanachutiwat, S., Shuhong, L., Geer, R., Wang, W.: Monolithic graphene nanoribbon electronics for interconnect performance improvement. In: IEEE (ISCAS), pp. 589–592 (2009)

  10. Das, D., Rahaman, H.: Modeling of IR-drop induced delay fault in CNT and GNR power distribution networks. In: CODEC-2012, pp. 1–4 (2012)

  11. Murali, R., Brenner, K., Yang, Y., Beck, T., Meindl, J.D.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Lett. 30(6), 611–613 (2009)

    Article  Google Scholar 

  12. Pan, C., Raghavan, P., Ceyhan, A., Catthoor, F., Tokei, Z., Naeemi, A.: Technology/circuit/system co-optimization and benchmarking for multilayer graphene interconnects at sub-10-nm technology node. IEEE Trans. Electron Devices 62(5), 1530–1536 (2015)

    Article  Google Scholar 

  13. Bhattacharya, S., Das, D., Rahaman, H.: Analysis of temperature dependent power supply voltage drop in graphene nanoribbon and Cu based power interconnects. AIMS Mater. Sci. 3, 1493–1506 (2016)

    Article  Google Scholar 

  14. Bhattacharya, S., Das, D., Rahaman, H.: Analysis of delay fault in GNR power interconnects. Int. J. Numer. Modelling Electron. Networks Devices Fields 31(3), 1–16 (2018)

    Article  Google Scholar 

  15. Congs, J.J., Leunge, K.S.: Optimal wire sizing under Elmore delay model. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst 14(3), 321–336 (1995)

    Article  Google Scholar 

  16. Ismail, Y.I., Friedman, E.G., Neves, J.L.: Figures of merit to characterize the importance of on-chip inductance. IEEE Trans. Very Large Scale Integr. Syst. 7(4), 442–449 (1999)

    Article  Google Scholar 

  17. Zhu, Q., Dai, W.M.: High-speed clock network sizing optimization based on distributed RC and lossy RLC interconnect models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(9), 1106–1118 (1996)

    Article  Google Scholar 

  18. El-Moursy, M.A., Friedman, E.G.: Optimum wire sizing of RLC interconnect with repeaters. Integr. VLSI J. 38(2), 205–225 (2004)

    Article  Google Scholar 

  19. Bakoglou, H.B., Mendl, J.D.: Optimal interconnections circuit for VLSI. IEEE Trans. Electron Device 32(5), 903–909 (1985)

    Article  Google Scholar 

  20. Alperte, C.J., Devgane, A., Fishburne, J.P., Quaye, S.T.: Interconnect synthesis without wire tapering. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst. 20(1), 90–104 (2001)

    Article  Google Scholar 

  21. Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

    Article  Google Scholar 

  22. Bhattacharya, S., Das, D., Rahaman, H.: Reduced thickness interconnect model using GNR to avoid crosstalk effects. J. Comput. Electron. 15(2), 367–380 (2016)

    Article  Google Scholar 

  23. Kumar, V., Rakheja, S., Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)

    Article  Google Scholar 

  24. Leong, W.S., Gong, H., Thong, J.T.L.: Low-contact-resistance graphene devices with nickel–etched–graphene contacts. ACS Nano 8(1), 994–1001 (2014)

    Article  Google Scholar 

  25. Internationals Technology Roadmap for Semiconductors (ITRS-2013) Report. http://www.itrs.net/report.html. Accessed 2018

  26. Goetsch, R.J., Anand, V.K., Pandey, A., Johnston, D.C.: Structural, thermal, magnetic, and electronic transport properties of the LaNi2(Ge1−x Px)2 system. Phys. Rev. B 85(5), 054517 (2012)

    Article  Google Scholar 

  27. Bid, A., Bora, A., Raychaudhuri, A.K.: Temperature dependence of the resistance of metallic nanowires of diameter ≥ 15 nm: applicability of Bloch–Grüneisen theorem. Phys. Rev. B: Condens. Matter Mater. Phys. 3(74), 1–9 (2006)

    Google Scholar 

  28. Nishad, A.K., Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2014)

    Article  Google Scholar 

  29. Bhattacharya, S., Das, D., Rahaman, H.: Stability analysis in top contact and side-contact graphene nanoribbon interconnects. IETE J. Res. 63(4), 588–596 (2017)

    Article  Google Scholar 

  30. Bhattacharya, S., Das, D., Rahaman, H.: Analysis of simultaneous switching noise and IR-drop in side-contact multilayer graphene nanoribbon power distribution network. J. Circuit Syst. Comput. 27(1), 1850001–1850017 (2018)

    Article  Google Scholar 

Download references

Funding

SMDP-C2SD, DeitY, MCIT, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Bhattacharya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interests.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Das, S., Mukhopadhyay, A. et al. Analysis of a temperature-dependent delay optimization model for GNR interconnects using a wire sizing method. J Comput Electron 17, 1536–1548 (2018). https://doi.org/10.1007/s10825-018-1251-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1251-4

Keywords

Navigation