Skip to main content
Log in

EMA-based modeling of the surface potential and drain current of dual-material gate-all-around TFETs

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An analytical model for the surface potential and drain current of dual-material gate-all-around tunnel field-effect transistors based on evanescent mode analysis (EMA) is introduced. In the EMA, the channel potential is a sum of the solutions of the one-dimensional (1D) Poisson equation and two-dimensional (2D) Laplace equation. The EMA is preferred over the parabolic approximation due to the invariance of the characteristic length (λ) over the channel. The band-to-band tunneling rate is integrated over the tunneling volume to calculate the drain current. The accuracy of the model is evaluated by comparing it with results obtained from numerical simulations, revealing good agreement. The presented model could be easily integrated into commercial circuit simulators because of its accuracy and simplicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89(3), 259–288 (2001). https://doi.org/10.1109/5.915374

    Article  Google Scholar 

  2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305–327 (2003). https://doi.org/10.1109/JPROC.2002.808156

    Article  Google Scholar 

  3. Seabaugh, A.C., Zhang, Q.: Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010). https://doi.org/10.1109/JPROC.2010.2070470

    Article  Google Scholar 

  4. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between pin tunneling transistors and conventional MOSFETs. IEEE Trans. Electron Dev. 56(3), 456–465 (2009). https://doi.org/10.1109/TED.2008.2011934

    Article  Google Scholar 

  5. Toh, E.-H., Wang, G.H., Samudra, G., Yeo, Y.-C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504 (2008). https://doi.org/10.1063/1.2924413

    Article  Google Scholar 

  6. Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Dev. 60(10), 3285–3290 (2013). https://doi.org/10.1109/TED.2013.2276888

    Article  Google Scholar 

  7. Vishnoi, R., Kumar, M.J.: Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Dev. 61(6), 1936–1942 (2014). https://doi.org/10.1109/ted.2014.2315294

    Article  Google Scholar 

  8. Gholizadeh, M., Hosseini, S.E.: A 2-D analytical model for double-gate tunnel FETs. IEEE Trans. Electron Dev. 61(5), 1494–1500 (2014). https://doi.org/10.1109/TED.2014.2313037

    Article  Google Scholar 

  9. Toh, E.-H., Wang, G.H., Chan, L., Samudra, G., Yeo, Y.-C.: Device physics and guiding principles for the design of double-gate tunneling field effect transistor with silicon-germanium source heterojunction. Appl. Phys. Lett. 91(24), 243505 (2007). https://doi.org/10.1063/1.2823606

    Article  Google Scholar 

  10. Ionescu, A.M., Boucart, K., Moselund, K.E., Pott, V., Tsamados, D.: Small slope micro/nano-electronic switches. In: 2007. CAS 2007. International Semiconductor Conference, vol. 2, pp. 397–402. IEEE. https://doi.org/10.1109/smicnd.2007.4519743

  11. Gopalakrishnan, K., Griffin, P.B., Plummer, J.D.: I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q. In: Electron Devices Meeting, 2002. IEDM’02. International, pp. 289–292. IEEE. https://doi.org/10.1109/iedm.2002.1175835

  12. Nathanson, H.C., Newell, W.E., Wickstrom, R.A., Davis, J.D.: The resonant gate transistor. IEEE Trans. Electron Dev. 14(3), 117–133 (1967). https://doi.org/10.1109/T-ED.1967.15912

    Article  Google Scholar 

  13. Yeo, K.H., Suk, S.D., Li, M., Yeoh, Y., Cho, K.H., Hong, K-H., Yun, S., et al.: Gate-all-around (GAA) twin silicon nanowire MOSFET (TSNWFET) with 15 nm length gate and 4 nm radius nanowires. In: Electron Devices Meeting, 2006. IEDM’06. International, pp. 1–4. IEEE. https://doi.org/10.1109/iedm.2006.346838

  14. Shao, Q., Zhao, C., Wu, C., Zhang, J., Zhang, L., Yu, Z.: Compact model and projection of silicon nanowire tunneling transistors (NW-tFETs). In: 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2. IEEE. https://doi.org/10.1109/edssc.2013.6628137

  15. Verhulst, A.S., Sorée, B., Leonelli, D., Vandenberghe, W.G., Groeseneken, G.: Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J. Appl. Phys. 107(2), 024518 (2010). https://doi.org/10.1063/1.3277044

    Article  Google Scholar 

  16. Saurabh, S., Kumar, M.J.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Dev. 58(2), 404–410 (2011). https://doi.org/10.1109/ted.2010.2093142

    Article  Google Scholar 

  17. Bardon, M.G., Neves, H.P., Puers, R., Van Hoof, C.: Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Dev. 57(4), 827–834 (2010). https://doi.org/10.1109/TED.2010.2040661

    Article  Google Scholar 

  18. Vishnoi, R., Kumar, M.J.: A pseudo-2-D-analytical model of dual material gate all-around nanowire tunneling FET. IEEE Trans. Electron Dev. 61(7), 2264–2270 (2014). https://doi.org/10.1109/ted.2014.2321977

    Article  Google Scholar 

  19. Kumar, S., Raj, B.: Compact channel potential analytical modeling of DG-TFET based on evanescent-mode approach. J. Comput. Electron. 14(3), 820–827 (2015). https://doi.org/10.1007/s10825-015-0718-9

    Article  Google Scholar 

  20. Khaveh, H.R.T., Mohammadi, S.: Potential and drain current modeling of gate-all-around tunnel FETs considering the junctions depletion regions and the channel mobile charge carriers. IEEE Trans. Electron Dev. 63(12), 5021–5029 (2016). https://doi.org/10.1109/TED.2016.2619761

    Article  Google Scholar 

  21. Gupta, S.K.: Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects. Superlattices Microstruct. 88, 188–197 (2015). https://doi.org/10.1016/j.spmi.2015.09.001

    Article  Google Scholar 

  22. Aouaj, A., Bouziane, A., NouaÇry, A.: Analytical 2D modeling for potential distribution and threshold voltage of the short channel fully depleted cylindrical/surrounding gate MOSFET. Int. J. Electron. 92(8), 437–443 (2005)

    Article  Google Scholar 

  23. Lee, J., Shin, H.: Evanescent-mode analysis of short-channel effects in MOSFETs. J. Kor. Phys. Soc. 44(1), 50–55 (2004)

    Article  Google Scholar 

  24. Dash, S., Mishra, G.P.: A new analytical threshold voltage model of cylindrical gate tunnel FET (CG-TFET). Superlattices Microstruct. 86, 211–220 (2015)

    Article  Google Scholar 

  25. Silvaco ATLAS.: Device simulation software, Silvaco Int., Santa Clara, CA (2013)

  26. Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98(14), 143503 (2011)

    Article  Google Scholar 

  27. Marin, E.G., Ruiz, F.G., Schmidt, V., Godoy, A., Riel, H., Gámiz, F.: Analytic drain current model for III–V cylindrical nanowire transistors. J. Appl. Phys. 118(4), 044502 (2015)

    Article  Google Scholar 

  28. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Electron Dev. Lett. 14(12), 569–571 (1993)

    Article  Google Scholar 

  29. Sajjad, R.N., Chern, W., Hoyt, J.L., Antoniadis, D.A.: Trap assisted tunneling and its effect on subthreshold swing of tunnel FETs. IEEE Trans. Electron Dev. 63(11), 4380–4387 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Gupta.

Appendix

Appendix

The values of the coefficients A0, B0, C0, and D0 obtained from the boundary conditions [7] are given below:

$$\begin{aligned} A_{0} & = - \frac{1}{{2J_{0} (R\lambda_{0} )\sinh (L\lambda_{0} )}}\\ &\quad \left\{ \begin{aligned} & \left( {V_{{{\text{bi}}1}} - \varphi_{{{\text{a}}1}} (r)} \right)\exp ( - L\lambda_{0} ) \\ & + \varphi_{{{\text{a}}2}} (r) + V_{{{\text{bi}}2}} - V_{\text{DS}} \\ & + \left( {\varphi_{{{\text{a}}1}} (r) - \varphi_{{{\text{a}}2}} (r)} \right)\cosh \left( {(L - L_{1} )\lambda_{0} } \right) \\ \end{aligned} \right\},\end{aligned} $$
(42)
$$ B_{0} = \frac{{V_{{{\text{bi}}1}} - \varphi_{{{\text{a}}1}} (r) - A_{0} J_{0} (R\lambda_{0} )}}{{J_{0} (R\lambda_{0} )}}, $$
(43)
$$\begin{aligned} C_{0} & = - \frac{1}{{2J_{0} (R\lambda_{0} )\sinh (L\lambda_{0} )}}\\ &\quad \left\{ \begin{aligned} & \exp ((L_{1} \lambda_{0} )\left\{ {\varphi_{{{\text{a}}2}} (r) + V_{{{\text{bi}}2}} - V_{\text{DS}} } \right\} \\ & + (V_{{{\text{bi}}1}} - \varphi_{{{\text{a}}1}} (r)\exp ((L_{1} - L)\lambda_{0} ) \\ & + \varphi_{{{\text{a}}1}} (r)\cosh (L\lambda_{0} )\exp ((L_{1} - L)\lambda_{0} ) \\ & - \varphi_{{{\text{a}}2}} (r)\cosh (L\lambda_{0} )\exp ((L_{1} - L)\lambda_{0} ) \\ \end{aligned} \right\},\end{aligned} $$
(44)
$$ D_{0} = C_{0} - A_{0} \exp (L_{1} \lambda_{0} ) + B_{0} \exp ( - L_{1} \lambda_{0} ). $$
(45)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, V., Verma, Y.K., Verma, P.K. et al. EMA-based modeling of the surface potential and drain current of dual-material gate-all-around TFETs. J Comput Electron 17, 1596–1602 (2018). https://doi.org/10.1007/s10825-018-1250-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1250-5

Keywords

Navigation