Skip to main content
Log in

Computational characterization of a-Si:H/c-Si interfaces

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We use ab initio molecular dynamics to generate realistic a-Si:H/c-Si interface structures with very low defect-state density by performing a high-temperature annealing. Throughout the annealing, we monitor the evolution of the structural and electronic properties. The analysis of the bonds by means of the electron localization function reveals that dangling bonds move toward the free a-Si:H surface, leaving the interface region itself completely defect free. The hydrogen follows this movement, which indicates that in the case under consideration, hydrogen passivation does not play a significant role at the interface. A configuration with a satisfactory low density of defect states is reached after annealing at 700 K. A detailed characterization of the electronic states in this configuration in terms of their energy, localization, and location reveals that, although no dangling bond states can be found near the interface, localized interface states do exist and are attributed to a potential barrier at the interface. The quantitative description of electronic localization also allows for the determination of the a-Si:H mobility gap, which, together with the c-Si band gap, yields band offsets that are in qualitative agreement with experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanematsu, M., Uzu, H., Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017). https://doi.org/10.1038/nenergy.2017.32

    Article  Google Scholar 

  2. Jensen, N., Rau, U., Hausner, R.M., Uppal, S., Oberbeck, L., Bergmann, R.B., Werner, J.H.: Recombination mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. J. Appl. Phys. 87(5), 2639 (2000). https://doi.org/10.1063/1.372230

    Article  Google Scholar 

  3. Song, Y., Park, M., Guliants, E., Anderson, W.: Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon/crystalline silicon heterojunction solar cells. Solar Energy Mater. Solar Cells 64(3), 225 (2000). https://doi.org/10.1016/S0927-0248(00)00222-1. http://www.sciencedirect.com/science/article/pii/S0927024800002221

    Article  Google Scholar 

  4. Froitzheim, A., Brendel, K., Elstner, L., Fuhs, W., Kliefoth, K., Schmidt, M.: Interface recombination in heterojunctions of amorphous and crystalline silicon. J. Non-crystalline Solids 299–302, Part 1, 663 (2002). https://doi.org/10.1016/S0022-3093(01)01029-8. http://www.sciencedirect.com/science/article/pii/S0022309301010298. 19th International Conference on Amorphous and Microcrystalline Semiconductors

    Article  Google Scholar 

  5. Peressi, M., Colombo, L., Gironcoli, S.D.: Role of defects in the electronic properties of amorphous/crystalline Si interface. Phys. Rev. B 64, 193303 (2001). https://doi.org/10.1103/PhysRevB.64.193303

    Article  Google Scholar 

  6. Tosolini, M., Colombo, L., Peressi, M.: Atomic-scale model of c-Si/a-Si: H interfaces. Phys. Rev. B 69, 075301 (2004). https://doi.org/10.1103/PhysRevB.69.075301

    Article  Google Scholar 

  7. Nolan, M., Legesse, M., Fagas, G.: Surface orientation effects in crystalline-amorphous silicon interfaces. Phys. Chem. Chem. Phys. 14, 15173 (2012). https://doi.org/10.1039/C2CP42679J

    Article  Google Scholar 

  8. George, B.M., Behrends, J., Schnegg, A., Schulze, T.F., Fehr, M., Korte, L., Rech, B., Lips, K., Rohrmüller, M., Rauls, E., Schmidt, W.G., Gerstmann, U.: Atomic structure of interface states in silicon heterojunction solar cells. Phys. Rev. Lett. 110, 136803 (2013). https://doi.org/10.1103/PhysRevLett.110.136803

    Article  Google Scholar 

  9. Santos, I., Cazzaniga, M., Onida, G., Colombo, L.: Atomistic study of the structural and electronic properties of a-Si:H/c-Si interfaces. J. Phys. Condens. Matter 26(9), 095001 (2014). http://stacks.iop.org/0953-8984/26/i=9/a=095001

    Google Scholar 

  10. Jarolimek, K., Hazrati, E., de Groot, R.A., de Wijs, G.A.: Band offsets at the interface between crystalline and amorphous silicon from first principles. Phys. Rev. Appl. 8, 014026 (2017). https://doi.org/10.1103/PhysRevApplied.8.014026

    Article  Google Scholar 

  11. Czaja, P., Celino, M., Giusepponi, S., Gusso, M., Aeberhard, U.: Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells, pp. 111–124. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53862-4_10

    Book  Google Scholar 

  12. Jarolimek, K., de Groot, R.A., de Wijs, G.A., Zeman, M.: First-principles study of hydrogenated amorphous silicon. Phys. Rev. B 79, 155206 (2009). https://doi.org/10.1103/PhysRevB.79.155206

    Article  Google Scholar 

  13. Legesse, M., Nolan, M., Fagas, G.: Revisiting the dependence of the optical and mobility gaps of hydrogenated amorphous silicon on hydrogen concentration. J. Phys. Chem. C 117(45), 23956 (2013). https://doi.org/10.1021/jp408414f

    Article  Google Scholar 

  14. Czaja, P., Celino, M., Giusepponi, S., Gusso, M., Aeberhard, U.: Ab-Initio Analysis of Structural, Electronic, and Optical Properties of a-Si:H (2017). ArXiv:1703.10487 [cond-mat.mtrl-sci]

  15. Khomyakov, P.A., Andreoni, W., Afify, N.D., Curioni, A.: Large-scale simulations of a-Si:H: the origin of midgap states revisited. Phys. Rev. Lett. 107, 255502 (2011). https://doi.org/10.1103/PhysRevLett.107.255502

    Article  Google Scholar 

  16. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  MathSciNet  Google Scholar 

  17. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  MathSciNet  Google Scholar 

  18. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). http://stacks.iop.org/0953-8984/21/i=39/a=395502

    Google Scholar 

  19. Quantum ESPRESSO. http://www.quantum-espresso.org. Accessed 29 Aug 2018

  20. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  Google Scholar 

  21. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  MathSciNet  Google Scholar 

  22. Car, R., Parrinello, M.: Structural, dymanical, and electronic properties of amorphous silicon: an ab initio molecular-dynamics study. Phys. Rev. Lett. 60, 204 (1988). https://doi.org/10.1103/PhysRevLett.60.204

    Article  Google Scholar 

  23. CP2K. http://www.cp2k.org/. Accessed 29 Aug 2018

  24. Goedecker, S., Teter, M., Hutter, J.: Separable dual-space gaussian pseudopotentials. Phys. Rev. B 54, 1703 (1996). https://doi.org/10.1103/PhysRevB.54.1703

    Article  Google Scholar 

  25. Hartwigsen, C., Goedecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641 (1998). https://doi.org/10.1103/PhysRevB.58.3641

    Article  Google Scholar 

  26. Krack, M.: Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114(1), 145 (2005). https://doi.org/10.1007/s00214-005-0655-y

    Article  Google Scholar 

  27. Andersen, H.C.: Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys. 72(4), 2384 (1980). https://doi.org/10.1063/1.439486. http://scitation.aip.org/content/aip/journal/jcp/72/4/10.1063/1.439486

    Article  Google Scholar 

  28. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984). https://doi.org/10.1063/1.447334. http://scitation.aip.org/content/aip/journal/jcp/81/1/10.1063/1.447334

    Article  Google Scholar 

  29. Becke, A.D., Edgecombe, K.E.: A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92(9), 5397 (1990). https://doi.org/10.1063/1.458517. http://scitation.aip.org/content/aip/journal/jcp/92/9/10.1063/1.458517

    Article  Google Scholar 

  30. Savin, A., Jepsen, O., Flad, J., Andersen, O.K., Preuss, H., von Schnering, H.G.: Electron localization in solid-state structures of the elements: the diamond structure. Angew. Chem. Int. Edit. Engl. 31(2), 187 (1992). https://doi.org/10.1002/anie.199201871

    Article  Google Scholar 

  31. Johlin, E., Wagner, L.K., Buonassisi, T., Grossman, J.C.: Origins of structural hole traps in hydrogenated amorphous silicon. Phys. Rev. Lett. 110, 146805 (2013). https://doi.org/10.1103/PhysRevLett.110.146805

    Article  Google Scholar 

  32. Ziman, J.M. (ed.): Models of Disorder : The Theoretical Physics of Homogeneously Disordered Systems. Cambridge University Press, Cambridge (1979)

    Google Scholar 

  33. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi (b) 15(2), 627 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  34. Winer, K.: Defects in hydrogenated amorphous silicon. Annu. Rev. Mater. Sci. 21(1), 1 (1991). https://doi.org/10.1146/annurev.ms.21.080191.000245

    Article  Google Scholar 

  35. Schulze, T.F., Korte, L., Ruske, F., Rech, B.: Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder. Phys. Rev. B 83, 165314 (2011). https://doi.org/10.1103/PhysRevB.83.165314

    Article  Google Scholar 

  36. Chiang, T.C., Himpsel, F.J.: Subvolume a . 2.1.3 Si: Datasheet from Landolt-Börnstein—Group III Condensed Matter, vol. 23a: “subvolume a” in springermaterials, Springer, Berlin (1989). https://doi.org/10.1007/10377019_8. http://materials.springer.com/lb/docs/sm_lbs_978-3-540-45905-7_8

  37. Perdew, J.P.: Density functional theory and the band gap problem. Int. J. Quantum Chem. 28(S19), 497 (1985). https://doi.org/10.1002/qua.560280846

    Article  Google Scholar 

  38. Mews, M., Liebhaber, M., Rech, B., Korte, L.: Valence band alignment and hole transport in amorphous/crystalline silicon heterojunction solar cells. Appl. Phys. Lett. 107(1), 013902 (2015). https://doi.org/10.1063/1.4926402

    Article  Google Scholar 

  39. Liebhaber, M., Mews, M., Schulze, T.F., Korte, L., Rech, B., Lips, K.: Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiOx:H, \(0 < \text{ x } < 2\)). Appl. Phys. Lett. 106(3), 031601 (2015). https://doi.org/10.1063/1.4906195

    Article  Google Scholar 

  40. Kleider, J.P., Gudovskikh, A.S., Roca i Cabarrocas, p: Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements. Appl. Phys. Lett. 92(16), 162101 (2008). https://doi.org/10.1063/1.2907695

    Article  Google Scholar 

  41. Street, R.A., Tsai, C.C., Kakalios, J., Jackson, W.B.: Hydrogen diffusion in amorphous silicon. Philos. Mag. B 56(3), 305 (1987). https://doi.org/10.1080/13642818708221319

    Article  Google Scholar 

  42. Jülich Supercomputing Centre, JURECA: General-purpose supercomputer at Jülich supercomputing centre. J. Large Scale Res. Facil. 2, A62 (2016). https://doi.org/10.17815/jlsrf-2-121

  43. Ponti, G., Palombi, F., Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone, F., Bertini, R., Bracco, G., Caporicci, M., Calosso, B., Chinnici, M., Colavincenzo, A., Cucurullo, A., Dangelo, P., Rosa, M.D., Michele, P.D., Funel, A., Furini, G., Giammattei, D., Giusepponi, S., Guadagni, R., Guarnieri, G., Italiano, A., Magagnino, S., Mariano, A., Mencuccini, G., Mercuri, C., Migliori, S., Ornelli, P., Pecoraro, S., Perozziello, A., Pierattini, S., Podda, S., Poggi, F., Quintiliani, A., Rocchi, A., Sciò, C., Simoni, F., Vita, A.: In: 2014 International Conference on High Performance Computing Simulation (HPCS), pp. 1030–1033 (2014). https://doi.org/10.1109/HPCSim.2014.6903807

Download references

Acknowledgements

The authors gratefully acknowledge funding from the European Commission Horizon 2020 research and innovation program under grant agreement No. 676629, support through the COST action MP1406 MultiscaleSolar, as well as the computing time granted on the supercomputers JURECA [42] at Jülich Supercomputing Centre and CRESCO [43] on the ENEA-GRID infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Aeberhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaja, P., Giusepponi, S., Gusso, M. et al. Computational characterization of a-Si:H/c-Si interfaces . J Comput Electron 17, 1457–1469 (2018). https://doi.org/10.1007/s10825-018-1238-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1238-1

Keywords

Navigation