Skip to main content
Log in

Design rules for threshold switches based on a field triggered thermal runaway mechanism

  • S.I.: Computational Electronics of Emerging Memory Elements
  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We investigate a new type of threshold switching devices, which is based on a purely electronic phenomena. These threshold switches are polarity independent and switch abruptly from a high resistive state to a low resistive state at a threshold voltage. The device stays in this low resistive state as long as a high voltage drops over the device. When the voltage is reduced, the low resistive state is lost and the device switches back to the initial high resistive state. This makes these threshold switches highly interesting as selector elements for resistive switching memory concepts, based on device arrays, which are the prerequisite for new applications like logic-in-memory concepts. The threshold switching considered here is based on a combination of a Poole–Frenkel conduction mechanism and Joule heating. Hence, it is not strongly restricted to specific materials rather it is connected to the physical quantities of the Poole–Frenkel conduction mechanism and the thermal conductance. This enables to design the threshold switch to its application requirements by adjusting the relevant physical material properties or designing the device geometry. Here we present a theoretical study, which tackles the influence of several material properties and the device design. From this simulation model the impact on technical important figures of merits is determined, such as the threshold switching voltage and the selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8(1), 13 (2013)

    Article  Google Scholar 

  2. Burr, G., Shenoy, R., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., Hwang, H.: Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B 32(4), 040802 (2014)

    Article  Google Scholar 

  3. Pickett, M.D., Borghetti, J., Yang, J.J., Medeiros-Ribeiro, G.: Coexistence of memristance and negative differential resistance in a nanoscale metal-oxide-metal system. Adv. Mater. 23(15), 1730+ (2011)

    Article  Google Scholar 

  4. Rupp, J.A.J., Waser, R., Wouters, D.J.: Threshold Switching in Amorphous Cr-doped Vanadium Oxide for New Crossbar Selector. In: 2016 IEEE 8th International Memory Workshop (IMW), ed. by IEEE. Institut fr Werkstoffe der Elektrotechnik II (IWE II) RWTH Aachen (IEEE Xplore, 2016), p. 4

  5. Wang, Y., Shi, X., Zhao, K., Xie, G., Huang, S., Zhang, L.: Controllable resistive switching in Au/Nb:SrTiO3 microscopic Schottky junctions. Appl. Surf. Sci. 364, 718 (2016)

    Article  Google Scholar 

  6. Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833 (2007)

    Article  Google Scholar 

  7. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80 (2008)

    Article  Google Scholar 

  8. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632 (2009)

    Article  Google Scholar 

  9. Linn, E., Rosezin, R., Kgeler, C., Waser, R.: Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403 (2010)

    Article  Google Scholar 

  10. Siemon, A., Breuer, T., Aslam, N., Ferch, S., Kim, W., van den Hurk, J., Rana, V., Hoffmann-Eifert, S., Waser, R., Menzel, S., Linn, E.: Realization of Boolean logic functionality using redox-based memristive devices. Adv. Funct. Mater. 25(40), 6414–6423 (2015)

    Article  Google Scholar 

  11. Zhang, L., Cosemans, S., Wouters, D., Groeseneken, G., Jurczak, M., Govoreanu, B., Trans, I.E.E.E.: On the optimal ON/OFF resistance ratio for resistive switching element in one-selector one-resistor crosspoint arrays. Electron Devices Lett. 62(10), 3250 (2015)

    Article  Google Scholar 

  12. Pickett, M.D., Williams, R.S.: Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology 23(21), 215202 (2012)

    Article  Google Scholar 

  13. Cha, E., Woo, J., Lee, D., Lee, S., Song, J., Koo, Y., Lee, J., Park, C.G., Yang, M.Y., Kamiya, K., Shiraishi, K., Magyari-Kope, B., Nishi, Y., Hwang, H.: Nanoscale (  10nm) 3D vertical ReRAM and Nb\(\text{O}_2\) threshold selector with TiN electrode. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.5.1–10.5.4 (2013)

  14. Nandi, S.K., Liu, X., Venkatachalam, D.K., Elliman, R.G.: Self-assembly of an Nb\(\text{ O }_2\) interlayer and configurable resistive switching in Pt/Nb/Hf\(\text{ O }_2\)/Pt structures. Appl. Phys. Lett. 107(13), 132901/1 (2015)

    Article  Google Scholar 

  15. Wylezich, H., Maehne, H., Rensberg, J., Ronning, C., Zahn, P., Slesazeck, S., Mikolajick, T., Appl, A.C.S.: Local ion irradiation-induced resistive threshold and memory switching in N\(\text{ b }_2 \text{ O }_5\)/Nb\(\text{ O }_x\) films. Mater. Interfaces 6(20), 17474 (2014)

    Article  Google Scholar 

  16. Liu, X., Nandi, S.K., Venkatachalam, D.K., Belay, K., Song, S., Elliman, R.G.: Reduced threshold current in Nb\(\text{ O }_2\) selector by engineering device structure. IEEE Electron Device Lett. 35(10), 1055 (2014)

    Article  Google Scholar 

  17. Liu, X., Sadaf, S.M., Son, M., Shin, J., Park, J., Lee, J., Park, S., Hwang, H.: Diode-less bilayer oxide (W\(\text{ O }_x\) – Nb\(\text{ O }_x\)) device for cross-point resistive memory applications. Nanotechnology 22, 475702/1 (2011)

    Google Scholar 

  18. Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., Lee, W., Kim, S., Park, S., Hwang, H.: Excellent selector characteristics of nanoscale V\(\text{ O }_2\) for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32(11), 1579 (2011)

    Article  Google Scholar 

  19. Vos, M., Liu, X., Grande, P.L., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: The use of electron rutherford backscattering to characterize novel electronic materials as illustrated by a case study of sputter-deposited nbox films. http://dx.doi.org/10.1016/j.nimb.2014.06.024 (2014)

  20. Chudnovskii, F.A., Odynets, L.L., Pergament, A.L., Stefanovich, G.B.: Electroforming and switching in oxides of transition metals: the role of metal-insulator transition in the switching mechanism. J. Solid State Chem. 122(1), 95 (1996)

    Article  Google Scholar 

  21. Liu, X., Li, S., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: Threshold switching and electrical self-oscillation in niobium oxide films. J. Appl. Phys. 120(12), 124102/1 (2016)

    Google Scholar 

  22. Borghetti, J., Snider, G.S., Kuekes, P.J., Yang, J.J., Stewart, D.R., Williams, R.S.: ’Memristive’ switches enable ’stateful’ logic operations via material implication. Nature 464(7290), 873 (2010)

    Article  Google Scholar 

  23. Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E.G., Kolodny, A., Weiser, U.C.: IEEE Trans Circuits Syst. II Express Briefs. MAGIC-memristor-aided logic 61(11), 895 (2014)

    Google Scholar 

  24. Li, S., Liu, X., Nandi, S.K., Venkatachalam, D.K., Elliman, R.G.: Coupling dynamics of Nb/N\(\text{ b }_2 \text{ O }_5\) relaxation oscillators. Nanotechnology 28, 125201 (2017)

    Article  Google Scholar 

  25. Funck, C., Menzel, S., Aslam, N., Zhang, H., Hardtdegen, A., Waser, R., Hoffmann-Eifert, S.: Multidimensional simulation of threshold switching in Nb\(\text{ O }_2\) based on an electric field triggered thermal runaway model. Adv. Electron. Mater. 2(7), 1600169/1 (2016)

    Article  Google Scholar 

  26. Slesazeck, S., Maehne, H., Wylezich, H., Wachowiak, A., Radhakrishnan, J., Ascoli, A.: Physical model of threshold switching in Nb\(\text{ O }_2\) based memristor. RSC Adv. 5, 102318 (2015)

    Article  Google Scholar 

  27. Funck, C., Hoffmann-Eifert, S., Waser, R., Menzel, S.: Simulation of threshold switching based on an electric field induced thermal runaway. In: 2016 International Conference On Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, September 6–8, 2016 (2016 International Conference On Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, September 6–8, 2016, 2016), pp. 319–322

  28. Slesazeck, S., Herzig, M., Mikolajick, T., Ascoli, A., Weiher, M., Tetzlaff, R.: Analysis of Vth variability in Nb\(\text{ O }_x\)-based threshold switches. In: 16th Non-Volatile Memory Technology Symposium (NVMTS), Carnegie Mellon Univ, Pittsburgh, PA (2016 16th Non-Volatile Memory Technology Symposium (nvmts)) (2016)

  29. Gibson, G.A., Musunuru, S., Zhang, J., Vandenberghe, K., Lee, J., Hsieh, C.C., Jackson, W., Jeon, Y., Henze, D., Li, Z., Williams, R.S.: An accurate locally active memristor model for S-type negative differential resistance in Nb\(\text{ O }_x\). Appl. Phys. Lett. 108(2), 23505/1 (2016)

    Article  Google Scholar 

  30. Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647 (1938)

  31. Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., Kim, D., Noh, T.W.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102(2), 26801/1 (2009)

    Article  Google Scholar 

  32. Seo, S., Lee, M.J., Seo, D.H., Jeoung, E.J., Suh, D.S., Joung, Y.S., Yoo, I.K., Hwang, I.R., Kim, S.H., Byun, I.S., Kim, J.S., Choi, J.S., Park, B.H.: Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655 (2004)

    Article  Google Scholar 

  33. Huang, Y., Huang, R., Cai, Y., Wu, H., Yue, P., Zhang, Y., Chen, C., Wang, Y.: A Ta\(\text{ O }_x\) based threshold switching selector for the RRAM crossbar array memory. In: Non-Volatile Memory Technology Symposium (NVMTS), pp. 85–87 (2012)

  34. Gallo, M.L., Athmanathan, A., Krebs, D., Sebastian, A.: Evidence for thermally assisted threshold switching behaviour in nanoscale phase-change memory cells. J. Appl. Phys. 119, 025704 (2016)

    Article  Google Scholar 

  35. Aluguri, R., Tseng, T.Y.: Overview of selector devices for 3-D stackable cross point RRAM arrays. IEEE J. Electron Devices Soc. 4, 294 (2016)

    Article  Google Scholar 

  36. Jo, S.H., Kumar, T.: Resistive random access memory for storage class applications. ECS Trans. 69(3), 47 (2015)

    Article  Google Scholar 

  37. Narayanan, P., Burr, G., Shenoy, R., Stephens, S., Virwani, K., Padilla, A., Kurdi, B.N., Gopalakrishnan, K.: Exploring the design space for crossbar arrays built with mixed-ionic-electronic-conduction (MIEC) access devices. IEEE J. Electron Devices Soc. 3(5), 423 (2015)

    Article  Google Scholar 

  38. Schroeder, H.: Poole–Frenkel-effect as dominating current mechanism in thin oxide films—an illusion?!. J. Appl. Phys. 117, 215103 (2015)

    Article  Google Scholar 

  39. Goodwill, J.M., Sharma, A.A., Li, D., Bain, J.A., Skowronski, M.: Electro-thermal model of threshold switching in Ta\(\text{ O }_x\)-based devices. ACS Appl. Mater. Interfaces 9, 11704 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dirk Wouters, Alexander Hardtdegen and Anne Siemon for the fruitful discussions. This work has been supported in parts by the Deutsche Forschungsgemeinschaft under SFB 917.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Funck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 118 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funck, C., Hoffmann-Eifert, S., Lukas, S. et al. Design rules for threshold switches based on a field triggered thermal runaway mechanism. J Comput Electron 16, 1175–1185 (2017). https://doi.org/10.1007/s10825-017-1061-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1061-0

Keywords

Navigation