Skip to main content
Log in

First-principles investigation on transport properties of \(\hbox {Zn}_{2}\hbox {SnO}_{4}\) molecular device and response toward \(\hbox {NO}_{2}\) gas molecules

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The transport properties of a \(\hbox {Zn}_{2}\hbox {SnO}_{4}\) device along with adsorption properties of \(\hbox {NO}_{2}\) gas molecules on \(\hbox {Zn}_{2}\hbox {SnO}_{4}\) (ZTO) molecular devices are investigated with density functional theory using the non-equilibrium Green’s function technique. The transmission spectrum and device density of states spectrum confirm the changes in HOMO–LUMO energy level due to transfer of electrons between the ZTO-based material and the \(\hbox {NO}_{2}\) molecules. IV characteristics demonstrate the variation in the current upon adsorption of \(\hbox {NO}_{2}\) gas molecules on the ZTO device. The findings of the present study clearly suggest that ZTO molecular devices can be used to detect \(\hbox {NO}_{2}\) gas molecules in the trace level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nagarajan, V., Chandiramouli, R.: First-principles investigation on interaction of NH\(_3\) gas on a silicene nanosheet molecular device. IEEE Trans. Nanotechnol. 16, 445–452 (2017)

    Article  Google Scholar 

  2. Lu, Y., Wu, J., Liu, J., Lei, M., Tang, S., Lu, P., Yang, L., Yang, H., Yang, Q.: Facile synthesis of \(\text{ Na }_{0.33}\text{ V }_{2}\text{ O }_{5}\) nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium ion batteries. ACS Appl. Mater. Interfaces 7, 17433–17440 (2015)

    Article  Google Scholar 

  3. Lei, M., Fu, X.L., Li, P.G., Tang, W.H.: Growth and photoluminescence of zinc blende ZnS nanowires via metalorganic chemical vapor deposition. J. Alloys Compd. 509, 5769–5772 (2011)

    Article  Google Scholar 

  4. Wei, S.-H., Zhang, S.: First-principles study of cation distribution in eighteen closed-shell \(\text{ A }^{\rm II}\text{ B }_{2}^{\rm III}\text{ O }_{4}\) and \(\text{ A }^{\rm IV}\text{ B }_{2}^{\rm II}\text{ O }_{4}\) spinel oxides. Phys. Rev. B 63, 045112 (2001)

    Article  Google Scholar 

  5. Nikolić, M.V., Satoh, K., Ivetić, T., Paraskevopoulos, K.M., Zorba, T.T., Blagojević, V., Mančić, L., Nikolić, P.M.: Infrared reflection spectroscopy of \(\text{ Zn }_{2}\text{ SnO }_{4}\) thin films deposited on silica substrate by radio frequency magnetron sputtering. Thin Solid Films 516, 6293–6299 (2008)

    Article  Google Scholar 

  6. Jackson, W.B., Hoffman, R.L., Herman, G.S.: High-performance flexible zinc tin oxide field-effect transistors. Appl. Phys. Lett. 87, 193503 (2005)

    Article  Google Scholar 

  7. Gorrn, P., Holzer, P., Riedl, T., Kowalsky, W., Wang, J., Weimann, T., Hinze, P., Kipp, S.: Stability of transparent zinc tin oxide transistors under bias stress. Appl. Phys. Lett. 90, 063502 (2007)

    Article  Google Scholar 

  8. Peiteado, M., Iglesias, Y., Fernández, J.F., De Frutos, J., Caballero, A.C.: Microstructural development of tin-doped ZnO bulk ceramics. Mater. Chem. Phys. 101, 1–6 (2007)

    Article  Google Scholar 

  9. Satoh, K., Kakehi, Y., Okamoto, A., Murakami, S., Uratani, F., Yotsuya, T.: Influence of oxygen flow ratio on properties of Zn\(_2\)SnO\(_4\) thin films deposited by RF magnetron sputtering. Jpn. J. Appl. Phys. Part 2 Lett. Express Lett. 44, L34–L37 (2005)

    Article  Google Scholar 

  10. Wu, X., Asher, S., Levi, D.H., King, D.E., Yan, Y., Gessert, T.A., Sheldon, P.: Interdiffusion of CdS and \(\text{ Zn }_{2}\text{ SnO }_{4}\) layers and its application in CdS/CdTe polycrystalline thin-film solar cells. J. Appl. Phys. 89, 4564–4569 (2001)

    Article  Google Scholar 

  11. Wang, W.W., Zhu, Y.J., Yang, L.X.: ZnO–SnO\(_{2}\) hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 17, 59–64 (2007)

    Article  Google Scholar 

  12. Tan, B., Toman, E., Li, Y., Wu, Y.: Zinc stannate \((\text{ Zn }_{2}\text{ SnO }_{4})\) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)

    Article  Google Scholar 

  13. Rong, A., Gao, X.P., Li, G.R., Yan, T.Y., Zhu, H.Y., Qu, J.Q., Song, D.Y.: Hydrothermal synthesis of \(\text{ Zn }_{2}\text{ SnO }_{4}\) as anode materials for Li-ion battery. J. Phys. Chem. B 110, 14754–14760 (2006)

    Article  Google Scholar 

  14. Jiang, Y.-Q., Chen, X.-X., Sun, R., Xiong, Z., Zheng, L.-S.: Hydrothermal syntheses and gas sensing properties of cubic and quasi-cubic \(\text{ Zn }_{2}\text{ SnO }_{4}\). Mater. Chem. Phys. 129, 53–61 (2011)

    Article  Google Scholar 

  15. Chen, D., Xu, J., Liang, B., Wang, X., Chen, P.-C., Zhou, C., Shen, G.: Electric transport, reversible wettability and chemical sensing of single-crystalline zigzag \(\text{ Zn }_{2}\text{ SnO }_{4}\) nanowires. J. Mater. Chem. 21, 17236–17241 (2011)

    Article  Google Scholar 

  16. Park, S., An, S., Ko, H., Jin, C., Lee, C.: Enhanced \(\text{ NO }_{2}\) sensing properties of \(\text{ Zn }_{2}\text{ SnO }_{4}\)-core/ZnO-shell nanorod sensors. Ceram. Int. 39, 3539–3545 (2013)

    Article  Google Scholar 

  17. Chen, Z., Cao, M., Hu, C.: Novel \(\text{ Zn }_{2}\text{ SnO }_{4}\) hierarchical nanostructures and their gas sensing properties toward ethanol. J. Phys. Chem. C 115, 5522–5529 (2011)

    Article  Google Scholar 

  18. Ma, G., Zou, R., Jiang, L., Zhang, Z., Xue, Y., Yu, L., Song, G., Li, W., Hu, J.: Phase-controlled synthesis and gas-sensing properties of zinc stannate \((\text{ ZnSnO }_{3}\) and \(\text{ Zn }_{2}\text{ SnO }_{4})\) faceted solid and hollow microcrystals. CrystEngComm 14, 2172 (2012)

    Article  Google Scholar 

  19. Sun, G., Zhang, S., Li, Y.: Solvothermal synthesis of \(\text{ Zn }_{2}\text{ SnO }_{4}\) nanocrystals and their photocatalytic properties. Int. J. Photoenergy 2014, 1–7 (2014)

    Google Scholar 

  20. Jaculine, M.M., Raj, C.J., Das, S.J.: Hydrothermal synthesis of highly crystalline \(\text{ Zn }_{2}\text{ SnO }_{4}\) nanoflowers and their optical properties. J. Alloys Compd. 577, 131–137 (2013)

    Article  Google Scholar 

  21. Chen, J., Lu, L., Wang, W.: \(\text{ Zn }_{2}\text{ SnO }_{4}\) nanowires as photoanode for dye-sensitized solar cells and the improvement on open-circuit voltage. J. Phys. Chem. C 116, 10841–10847 (2012)

    Article  Google Scholar 

  22. Yu, J.I.H., Choi, G.M.: Selective CO gas detection of \(\text{ Zn }_{2}\text{ SnO }_{4}\) gas sensor. J. Electroceram. 8, 249–255 (2002)

    Article  Google Scholar 

  23. Soler, J.M., Artacho, E., Gale, J.D., Garcia, A., Junquera, J., Ordejon, P., Portal, D.S.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002)

    Article  Google Scholar 

  24. Wang, Y., Perdew, J.P.: Spin scaling of the electron-gas correlation energy in the high-density limit. Phys. Rev. B. 43, 8911–8916 (1991)

    Article  Google Scholar 

  25. Roman-Perez, G., Soler, J.M.: Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009)

    Article  Google Scholar 

  26. Bao, L., Zang, J., Wang, G., Li, X.: Atomic-scale imaging of cation ordering in inverse spinel \(\text{ Zn }_{2}\text{ SnO }_{4}\) nanowires. Nano Lett. 14, 6505–6509 (2014)

    Article  Google Scholar 

  27. Nagarajan, V., Chandiramouli, R.: Sensing properties of monolayer borophane nanosheet towards alcohol vapors: a first-principles study. J. Mol. Graph. Model. 73, 208–216 (2017)

    Article  Google Scholar 

  28. Chandiramouli, R., Srivastava, A., Nagarajan, V.: First-principles insights of CO adsorption characteristics on Ge and In substituted silicene nanosheet. Silicon 9, 327–337 (2017)

    Article  Google Scholar 

  29. Nagarajan, V., Chandiramouli, R.: Switching properties of quinquephenylene molecular device—a first-principles approach. Chem. Phys. Lett. 675, 131–136 (2017)

    Article  Google Scholar 

  30. Nagarajan, V., Chandiramouli, R.: \(\text{ NO }_{2}\) adsorption behaviour on germanene nanosheet—a first-principles investigation. Superlattices Microstruct. 101, 160–171 (2017)

    Article  Google Scholar 

  31. Leenaerts, O., Partoens, B., Peeters, F.M.: Adsorption of \(\text{ H }_{2}\text{ O }\), \(\text{ NH }_{3}\), CO, \(\text{ NO }_{2}\), and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)

    Article  Google Scholar 

  32. Deekshithaa, M., Nagarajan, V., Chandiramouli, R.: First-principles studies on transport property and adsorption characteristics of trimethylamine on \(\alpha \)-MoO\(_{3}\) molecular device. Chem. Phys. Lett. 641, 129–135 (2015)

    Article  Google Scholar 

  33. Sriram, S., Nagarajan, V., Chandiramouli, R.: \(\text{ H }_{2}\text{ S }\) and \(\text{ NH }_{3}\) adsorption characteristics on CoO nanowire molecular device—a first-principles study. Chem. Phys. Lett. 636, 51–57 (2015)

    Article  Google Scholar 

  34. Nagarajan, V., Chandiramouli, R.: Borophene nanosheet molecular device for detection of ethanol—a first-principles study. Comput.Theor. Chem. 1105, 52–60 (2017)

    Article  Google Scholar 

  35. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  Google Scholar 

  36. Stokbro, K.: First-principles modeling of electron transport. J. Phys. 20, 064216 (2008)

    Google Scholar 

  37. Brandbyge, M., Srensen, M.R., Jacobsen, K.W.: Conductance eigen channels in nanocontacts. Phys. Rev. B 56, 14956 (1997)

    Article  Google Scholar 

  38. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  39. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B Condens. Matter Mater. Phys. 63, 245407 (2001)

    Article  Google Scholar 

  40. Chandiramouli, R., Nagarajan, V.: Transport studies of \(\text{ CeO }_{2}\) molecular device and adsorption behavior of CO on \(\text{ CeO }_{2}\) device: a first-principles investigation. J. Comput. Electron. 16, 316–324 (2017)

    Article  Google Scholar 

  41. Chandiramouli, R., Nagarajan, V.: Adsorption studies of \(\text{ NH }_{3}\) molecules on functionalized germanene nanosheet—a DFT study. Chem. Phys. Lett. 665, 22–30 (2016)

    Article  Google Scholar 

  42. Natale, C.D., Paolesse, R., Martinelli, E., Capuano, R.: Solid-state gas sensors for breath analysis: a review. Anal. Chim. Acta 824, 1–17 (2014)

    Article  Google Scholar 

  43. Baldea, L.: A quantum chemical study from a molecular transport perspective: ionization and electron attachment energies for species often used to fabricate single-molecule junctions. Faraday Discuss. 174, 37–56 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Chandiramouli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3773 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajan, V., Dhivya, G. & Chandiramouli, R. First-principles investigation on transport properties of \(\hbox {Zn}_{2}\hbox {SnO}_{4}\) molecular device and response toward \(\hbox {NO}_{2}\) gas molecules. J Comput Electron 17, 1–8 (2018). https://doi.org/10.1007/s10825-017-1047-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1047-y

Keywords

Navigation