Skip to main content
Log in

Thermal optimization of IGBT modules based on finite element method and particle swarm optimization

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Power modules have thermal stresses, and alternatives to the present methods are needed to identify the chips’ optimal position. By applying an optimization technique in the design process, the entire module will produce lower junction temperature, but methods based on trial and error as well as mathematical models may not provide an accurate result. This paper reveals a combined approach based on the finite element method and the particle swarm optimization algorithm to determine the ideal position of the chips within an insulated-gate bipolar transistor module in terms of junction temperature. Three scenarios are examined to cover all possible positions. The first scenario allows each chip to move asymmetrically and is selected as the most efficient situation of the chips. The preferred situation will result in a lower junction temperature and decreases the overall temperature approximately \(25\,{^{\circ }}\hbox {K}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davidson, J.N., Stone, D.A., Foster, M.P.: Arbitrary waveform power controller for thermal measurements in semiconductor devices. Electron. Lett. 48, 400–402 (2012)

    Article  Google Scholar 

  2. Mital, M., Scott, E.P.: Thermal design and optimization of an IGBT power electronic module. In: ASME Proceedings, Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, pp. 555–559 (2005)

  3. Nishimura, Y., Oonota, M., Momose, F.: Thermal management technology for IGBT modules. Fuji Electr. Rev. 56, 79–83 (2010)

    Google Scholar 

  4. Malu, N., Bora, D., Nakanekar, S., Tonapi, S.: Thermal management of an IGBT module using two-phase cooling. In: Proceedings of IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 1079–1085 (2014)

  5. Muzychka, Y.S., Culham, J.R., Yovanovich, M.M.: Thermal spreading resistance of eccentric heat sources on rectangular flux channels. ASME J. Electron. Packag. 125, 178–185 (2003)

    Article  Google Scholar 

  6. Tang, H., Ye, H., Wang, M., Fan, X., Zhang, G.: Thermal analysis and optimization of IGBT power electronic module based on layout model. In: 17th International Conference on Electronic Packaging Technology (ICEPT) (2016). doi:10.1109/ICEPT.2016.7583115

  7. Yang, K.S., Ding, W.T., Yeh, C.T., Lee, M.T., Wang, C.C.: An experimental and analytical investigation of the photo-thermalelectro characteristics of a high power InGaN LED module. Appl. Therm. Eng. 98, 756–765 (2016)

    Article  Google Scholar 

  8. Forster, S., Lindemann, A.: Combined optimisation of thermal behaviour and electrical parasitics in Power Semiconductor components. In: 13th European Conference on Power Electronics and Applications, pp. 1–10 (2009)

  9. Muhlfeld, O., Fuchs, F.W.: Comprehensive optimization method for thermal properties and parasitics in power modules. In: Proceedings of IEEE Energy Conversion Congress and Exposition, pp. 2266–2271 (2010)

  10. Hammadi, M., Choley, J., Penas, O., Louati, J., Rivière, A., Haddar, M.: Layout optimization of power modules using a sequentially coupled approach. Int. J. Simul. Model 10, 122–132 (2011)

    Article  Google Scholar 

  11. Mandray, S., Guichon, J.M., Schanen, J.L., Vieillard, S., Bouzourene, A.: Automatic layout optimization of a double sided power module regarding thermal and EMC constraints. In: Proceedings of Energy Conversion Congress and Exposition Conference Rec., pp. 1046–1051 (2009)

  12. Bryant, A., Parker-Allotey, N.A., Hamilton, D., Swan, I., Mawby, P.A., Ueta, T., et al.: A fast loss and temperature simulation method for power converters, part I: electrothermal modeling and validation. IEEE Trans. Power Electron. 27, 248–257 (2012)

    Article  Google Scholar 

  13. Evans, P.L., Castellazzi, A., Bozhko, S., Johnson, C.M.: Automatic design optimisation for power electronics modules based on rapid dynamic thermal analysis. In: 15th European Conference Power Electronics and Applications, pp. 1–10 (2013)

  14. Liu, Y., He, X.: Modeling identification of power plant thermal process based on PSO algorithm. In: Proceedings of American Control Conference, pp. 4484–4489 (2005)

  15. Chan, A.H.S.: Advances in Industrial Engineering and Operations Research. Springer, New York (2008)

    Book  Google Scholar 

  16. Bai, Q.: Analysis of particle swarm optimization algorithm. Comput. Inf. Sci. 3, 180–184 (2010)

    Google Scholar 

  17. Al-Rashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization applications in electric power systems. IEEE Trans. Evol. Comput. 13, 913–918 (2009)

    Article  Google Scholar 

  18. Hu, X., Eberhart, R.C.: Solving constrained nonlinear optimization problems with particle swarm optimization. In: Proceedings of the Sixth World Multiconference on Systemics, Cybernetics and Informatics, pp. 1–4 (2002)

  19. Chen, G., Han, D., Mei, Y., Cao, X., Wang, T., Chen, X., Lu, G.: Transient thermal performance of IGBT power modules attached by low-temperature sintered nanosilver. IEEE Trans. Device Mater. Reliab. 12, 124–132 (2012)

    Article  Google Scholar 

  20. Amro, R., Lutz, J., Rudzki, J., Sittig, R., Thoben, M.: Power cycling at high temperature swings of modules with low temperature joining technique. In: International Symposium on Power Semiconductor Devices and IC’s, pp. 1–4 (2006)

  21. Rajaguru, P., Lu, H., Bailey, C.: Sintered silver finite element modelling and reliability based design optimisation in power electronic module. Microelectron. Reliab. 55, 919–930 (2015)

    Article  Google Scholar 

  22. Wereszczak, A.A., Vuono, D.J., Wang, H., Ferber, M.K., Liang, Z.: Properties of Bulk Sintered Silver as Function of Porosity. Oak Ridge National Laboratory, Oak Ridge (2012)

    Book  Google Scholar 

  23. Dieckerhoff, S., Guttowski, S., Reichl, H.: Performance comparison of advanced power electronic packages for automotive applications. In: Automotive Power Electronics Conference, pp. 1–8 (2006)

  24. Ibrahim, M., Bhopte, S., Sammakia, B., Murray, B., Iyengar, M., Schmidt, R.: Effect of transient boundary conditions and detailed thermal modeling of data center rooms. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 300–310 (2012)

    Article  Google Scholar 

  25. Luo, Z., Ahn, H., Nokali, M.A.E.: A thermal model for insulated gate bipolar transistor module. IEEE Trans. Power Electron. 19, 902–907 (2004)

    Article  Google Scholar 

  26. Blackburn, D.L.: Temperature measurements of semiconductor devices—a review. In: Proceedings of 20th IEEE Semiconductor Thermal Measurement and Management Symposium, pp. 70–80 (2004)

  27. Di Napoli, F., Magnani, A., Coppola, M., Guerriero, P., D’Alessandro, V., Codecasa, L., Tricoli, P., Daliento, S.: On-line junction temperature monitoring of switching devices with dynamic compact thermal models extracted with model order reduction. Energies 10, 189 (2017)

    Article  Google Scholar 

  28. Barlini, D., Ciappa, M., Mermet-Guyennet, M., Fichtner, W.: Measurement of the transient junction temperature in MOSFET devices under operating conditions. Microelectron. Reliab. 47, 1707–1712 (2007)

    Article  Google Scholar 

  29. Kuhn, H., Mertens, A.: On-line junction temperature measurement of IGBTs based on temperature sensitive electrical parameters. In: 13th European Conference on Power Electronics and Applications, pp. 1–10 (2009)

  30. Strauss, B., Lindemann, A.: Measuring the junction temperature of an IGBT using its threshold voltage as a temperature sensitive electrical parameter (TSEP). In: 13th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 459–467 (2016)

  31. Zheng, H., Ngo, K.D., Lu, G.Q.: Thermal characterization system for transient thermal impedance measurement and power cycling of IGBT modules. Microelectron. Reliab. 55, 2575–2581 (2015)

    Article  Google Scholar 

  32. Cao, X., Wang, T., Ngo, K.D.T., Lu, G.Q.: Characterization of lead-free solder and sintered nano-silver die-attach layers using thermal impedance. IEEE Trans. Compon. Packag. Manuf. Technol. 1, 495–501 (2011)

    Article  Google Scholar 

  33. Current Rating of Power Semiconductors. VISHAY. https://www.vishay.com/docs/91419/appnote9.pdf (2010). Accessed 3 June 2017

  34. Schnell, R., Bayer, M., Geissmann, S.: Thermal design and temperature ratings of IGBT modules. ABB (2011)

  35. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  36. Clerc, M., Kennedy, J.: The particle swarm-explosion stability and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  37. Lim, S., Montakhab, M., Nouri, H.: A constriction factor based particle swarm optimization for economic dispatch. In: Proceedings of European Simulation and Modelling Conference (2009)

  38. Engelbrecht, A.: Fitness function evaluations: a fair stopping condition? In: Proceedings of IEEE Swarm Intelligence Symposium (SIS), pp. 1–8 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Alavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alavi, O., Abdollah, M. & Viki, A.H. Thermal optimization of IGBT modules based on finite element method and particle swarm optimization. J Comput Electron 16, 930–938 (2017). https://doi.org/10.1007/s10825-017-1023-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-1023-6

Keywords

Navigation