Skip to main content
Log in

Advanced microwave effective medium theory for two-component nonmagnetic metamaterials: fundamentals and antenna substrate application

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A modification of effective medium theory for two-component nonmagnetic metal–dielectric metamaterials is developed for use in the microwave frequency range. The metamaterial is represented as an unbounded isotropic dielectric host material with periodically embedded nonmagnetic metallic inclusions of cylindrical or spherical shape. The effective electromagnetic response of the metamaterial is represented by the tensor of the effective relative permittivity and tensor of the effective relative permeability. The losses of the metamaterial are also evaluated in this study. A physical interpretation for the nature of the effective properties of such metamaterials is given. Analytical models of the proposed effective medium theory are benchmarked against numerical simulations using commercial electromagnetic software. Two compact microwave rectangular dual-band patch antennas on such metamaterial substrates are designed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Monti, G., Catarinucci, L., Tarricone, L.: Compact microstrip antenna for RFID applications. Prog. Electromagn. Res. Lett. 8, 191–199 (2009)

    Article  Google Scholar 

  2. Rybin, O., Shulga, S.: Microwave miniaturization concept for narrow band rectangular patch antenna structures. J. Comput. Electron. 15, 1023–1027 (2016)

    Article  Google Scholar 

  3. La Spada, L., Bilotti, F., Vegni, L.: Metamaterial-based sensor design working in infrared frequency range. Prog. Electromagn. Res. B 34, 205–223 (2011)

    Article  Google Scholar 

  4. Chen, T., Li, S., Sun, H.: Metamaterial applications in sensing. Sensors 12, 2742–2765 (2012)

    Article  Google Scholar 

  5. Kim, H., Seo, C.: Highly efficient wireless power transfer using metamaterial slab with zero refractive property. Electron. Lett. 50, 1158–1160 (2014)

    Article  Google Scholar 

  6. Kim, G., Oh, T.-K., Lee, B.: Effects of metamaterial slabs applied to wireless power transfer at 13.56 MHz. Int. J. Antennas Propag. Article ID 840135 (2015)

  7. Velzquez-Ahumada, M.C., Freire, M.J., Marqus, R.: Metamaterial focusing device for microwave hyperthermia. Microw. Opt. Technol. Lett. 53, 2868–2872 (2011)

    Article  Google Scholar 

  8. Vrba, D., Rodrigues, D.B., Vrba, J., Stauffer, P.R.: Metamaterial antenna arrays for improved uniformity of microwave hyperthermia treatments. Prog. Electromagn. Res. 156, 1–12 (2016)

    Article  Google Scholar 

  9. Kern, D.J., Werner, D.H., Lisovich, M.: Using electromagnetic bandgap structures to synthesize metamaterial ferrites. IEEE Trans. Antennas Propag. 53, 1382–1389 (2005)

    Article  Google Scholar 

  10. Rybin, O.: Effective permeability tensor of partially magnetized two-component metaferrites. Mod. Phys. Lett. B 28, 1450199 (2014)

    Article  Google Scholar 

  11. Bruggeman, D.A.G.: Berechnung verschiedener physi-kalischer konstanten von heterogenen substanzen. I. Di-elektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Ann. Phys. 416, 636–664 (1935)

    Article  Google Scholar 

  12. Garnett, J.C.M.: Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A 203, 385 (1904); Colours in metal glasses, in metallic films, and in metallic solutions. II. ibid. 205, 237 (1906)

  13. Bergman, D.J.: The dielectric constant of a composite material a problem of classical physics. Phys. Rep. (Sect. C Phys. Lett.) 43, 377–407 (1978)

    MathSciNet  Google Scholar 

  14. Garcia, M.A.: Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D 44, 283001 (2011)

    Article  Google Scholar 

  15. Li, X., Ma, H.R.: The Bergman spectrum of the effective dielectric constant in two-dimensional composite media. J. Phys. Condens. Matter 11, L241–L246 (1999)

    Article  Google Scholar 

  16. Jylha, L., Sihvola, A.: Equation for the effective permittivity of particle-filled composites for material design applications. J. Phys. D 40, 4966–4973 (2007)

    Article  Google Scholar 

  17. Sihvola, A.: Effective-medium theories for bi-isotropic mixtures. Six-vectors, material homogenization, and racemization of chiral materials. In: Advances in Complex Electromagnetic Materials 28, NATO ASI Series, 131–144 (1997)

  18. Bregar, V.B., Pavlin, M.: Effective susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective media theory and alternative ferromagnetic approach. J. Appl. Phys. 95, 6289–6293 (2004)

    Article  Google Scholar 

  19. Yannopapas, V.: Artificial magnetism and negative refractive index in three-dimensional metamaterials of spherical particles at near-infrared and visible frequencies. Appl. Phys. A 87, 259–264 (2007)

    Article  Google Scholar 

  20. Holloway, C.L., Kuester, E.F., Baker-Jarvis, J., Kabos, P.: A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. IEEE Trans. Antennas Propag. 51, 2596–2603 (2003)

    Article  Google Scholar 

  21. Vendik, I., Vendik, O., Kolmakov, I., Odit, M.: Modelling of isotropic double negative media for microwave applications. Opto-Electron. Rev. 14, 179–186 (2006)

    Article  Google Scholar 

  22. Simovski, C.R., Belov, P.A., Atrashchenko, A.V., Kivshar, Y.S.: Wire metamaterials: physics and applications. Adv. Mater. 24, 4229–4248 (2012)

    Article  Google Scholar 

  23. McLachlan, D.S.: An equation for the conductivity of binary mixtures with anisotropic grain structures. J. Phys. C 20, 865–877 (1987)

    Article  Google Scholar 

  24. Wu, J., McLachlan, D.S.: Scaling behavior of the complex conductivity of graphite-boron nitride percolation systems. Phys. Rev. B 58, 14880–14887 (1998)

    Article  Google Scholar 

  25. McLachlan, D.S.: Analytical functions for the DC and AC conductivity of conductor-insulator composites. J. Ceram. 5, 93–110 (2000)

    Google Scholar 

  26. Chiteme, C., McLachlan, D.S.: AC and DC conductivity, magnetoresistance, and scaling in cellular percolation systems. Phys. Rev. B 67, 024206 (2003)

    Article  Google Scholar 

  27. McLachlan, D.S., Blaszkeiwicz, M., Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 2187–2203 (1990)

    Article  Google Scholar 

  28. Garner, A.L., Parker, G.J., Simone, D.L.: Accounting for conducting inclusion permeability in the microwave regime in a modified generalized effective medium theory. IEEE Trans. Dielectr. Electr. Insul. 22, 2064–2072 (2015)

  29. Galeener, F.L.: Submicroscopic-void resonance: the effect of internal roughness on optical absorption. Phys. Rev. Lett. 27, 421 (1971); 27, 769 (1971)

  30. Pitarke, J.M., Garca-Vidal, F.J., Pendry, J.B.: Interface modes of two-dimensional composite structures. Surf. Sci. 433–435, 605–611 (1999)

    Article  Google Scholar 

  31. Deryugin, I.A., Sigal, M.A.: Frequency dependence of the magnetic permeability and dielectric susceptibility of artificial dielectrics between 500 and 35000 Mcs. Sov. Tech. Phys. 6, 72–77 (1961)

    Google Scholar 

  32. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  33. Muhammad, R.: Theoretical analysis of the effective parameters of rod metamaterials. Ph.D. thesis, Bahauddin Zakariya University, Multan (2011)

  34. Rybin, O., Raza, M., Nawaz, T., Abbas, T.: Evaluation of layer properties of effective parameters of metallic rod metamaterials in GHz frequencies. AEUE. Int. J. Electron. Commun. 63, 648–652 (2009)

    Article  Google Scholar 

  35. Garcia, N., Ponizovskaya, E.V., Xiao, J.Q.: Zero permittivity materials: band gaps at the visible. Appl. Phys. Lett. 80, 1120–1122 (2002)

  36. Rybin, O.N., Pitafi, A.I.: Microwave evaluation of effective electromagnetic properties of metal-dielectric metamaterial with spherical inclusions. Telecommun. Radio Eng. 70, 1607–1615 (2011)

    Article  Google Scholar 

  37. Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Electrodynamics of Continuous Media, 2nd edn. Elsevier, Burlington (2008)

    Google Scholar 

  38. Balanis, C.A.: Antenna Theory. Analysis and Design. Wiley, New York (1997)

    Google Scholar 

  39. Mongia, R.K., Ittipiboon, A., Cuhaci, M.: Low profile dielectric resonator antennas using a very high permittivity material. Electron. Lett. 30, 1362–1363 (1994)

    Article  Google Scholar 

  40. Colburn, J.S., Rahmat-Samii, Y.: Patch antennas externally perforated high dielectric constant substrates. IEEE Trans. Antennas Propag. 47, 1785–1794 (1999)

    Article  Google Scholar 

  41. Rybin, O., Shulga, S.: Microwave CAD for miniaturized rectangular patch antennas with metamaterial substrates. Radio Phys. Radio Astron. 21, 141–147 (2016)

    Article  Google Scholar 

  42. Rybin, O.: Microwave miniaturization concept for narrow band rectangular patch antenna structures. Int. J. Appl. Electromagn. Mech. 48, 69–75 (2015)

    Article  Google Scholar 

  43. Jha, K.R., Singh, G.: Analysis and design of terahertz microstrip antenna on photonic bandgap material. J. Comput. Electron. 11, 364–373 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Rybin.

Appendix

Appendix

If the external magnetic field has vector \(\mathbf {H}_{0}\) parallel to the axes of the cylinders, the magnetic component inside the cylinders is given by [43]

$$\begin{aligned} H=H_0+\left( 1-F_{\mathrm{cyl}}\right) j, \end{aligned}$$
(29)

where j is the current flowing per unit length.

The net electromotive force (EMF) around the contour of the cylinder of a unit cell

$$\begin{aligned} \hbox {EMF}=-\mu _\mathrm{m}\mu _0\frac{\partial }{\partial t} \int _s H\,\mathrm {d}s-\oint _L j\delta \,\mathrm {d}l \end{aligned}$$
(30)

is balanced (\(\hbox {EMF}=0\)), where s is the cylinder cross-sectional area, which is equal to some S, and L is the contour of the cylinder cross-section, which is equal to some l. Then, integrating the right part of (30) gives

$$\begin{aligned} \mathrm{i}\omega \mu _\mathrm{m}\mu _0\left( H_0+\left[ 1-F_{\mathrm{cyl}}\right] j\right) =0. \end{aligned}$$
(31)

Solving Eq. (31) for the current j gives

$$\begin{aligned} j=-\frac{H_0}{1-F_{\mathrm{cyl}}+\mathrm{i}\delta \cdot l/\omega S \mu _\mathrm{m}\mu _0} . \end{aligned}$$
(32)

The average B-component over the entire unit cell is

$$\begin{aligned} B_{\mathrm{ave}}=\mu _\mathrm{m}\mu _0 H_0, \end{aligned}$$
(33)

while the average H-field along a line lying entirely outside the cylinders is given by

$$\begin{aligned} H_{\mathrm{ave}}=H_0-F_{\mathrm{cyl}}j. \end{aligned}$$
(34)

Substituting Eq. (32) and Eq. (6) into the relation between \(B_{\mathrm{ave}}\) and \(H_{\mathrm{ave}}\) in the form

$$\begin{aligned} B_{\mathrm{ave}}=\mu _{\mathrm{eff}} \mu _0 H_{\mathrm{ave}}, \end{aligned}$$
(35)

after some rather routine manipulations, finally gives

$$\begin{aligned} \mu _{\mathrm{eff}}=\mu _\mathrm{m}\left( 1-\frac{F_{\mathrm{cyl}}}{1+i\delta \cdot l/\mu _\mathrm{m} \mu _0 S\omega }\right) . \end{aligned}$$
(36)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybin, O., Shulga, S. Advanced microwave effective medium theory for two-component nonmagnetic metamaterials: fundamentals and antenna substrate application. J Comput Electron 16, 369–381 (2017). https://doi.org/10.1007/s10825-017-0979-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-017-0979-6

Keywords

Navigation