Skip to main content
Log in

A signal distribution grid for quantum-dot cellular automata

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Coplanar wire crossing has been a major challenge for quantum-dot cellular automata systems since their development. Several possible solutions have been presented, but they have either relied on non-adjacent cell interactions or have required switching time that scales with the number of inputs or outputs. In this paper, the authors present a signal distribution grid that enables multiple parallel crossings, while doing so with only adjacent cell interactions, a constant time for signal distribution regardless of the number of inputs or outputs, and regularly shaped and contiguous clocking regions that will be relatively easier to fabricate. The utility of this device is demonstrated by the design of a one-bit full adder that meets all of the listed requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)

    Article  Google Scholar 

  2. Lent, C.S., Tougaw, P.D., Porod, Wolfgang: Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)

    Article  Google Scholar 

  3. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)

    Article  Google Scholar 

  4. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  5. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  Google Scholar 

  6. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  7. Hennessy, K., Lent, C.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. 19(B), 1752–1755 (2001)

    Article  Google Scholar 

  8. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Dev. 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  9. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(1), 34–44 (2008)

    Article  Google Scholar 

  10. Anduwan, G.A., Padgett, B.D., Kuntzman, M., Hendrichsen, M.K., Sturzu, I., Khatun, M., Tougaw, P.D.: Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices. J. Appl. Phys. 107, 114306 (2010)

    Article  Google Scholar 

  11. Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance properties in quantum-dot cellular automata devices. J. Phys. D 39, 1489–1494 (2006)

    Article  Google Scholar 

  12. Khatun, M., Barclay, T., Sturzu, I., Tougaw, D.: Fault tolerance calculations for clocked quantum-dot cellular automata devices. J. Appl. Phys. 98, 094904 (2005)

    Article  Google Scholar 

  13. Khatun, M., Padgett, B.D., Anduwan, G.A., Sturzu, I., Tougaw, D.: Defect and temperature effects on complex quantum-dot cellular automata devices. J. Appl. Math. Phys. 1(2), 7–15 (2013)

    Article  Google Scholar 

  14. LaRue, M., Tougaw, D., Will, J.D.: Effect of stray charge in a QCA system: a validation of the intercellular hartree approximation. IEEE Trans. Nanotechnol. 12(2), 225–233 (2013)

    Article  Google Scholar 

  15. Chaudhary, A., Chen, D. Z., Hu, X. S., Whitton, K., Niemier, M., Ravichardran, R.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design (2005)

  16. Smith, B., Lim, S. K.: QCA channel routing with wire crossing minimization. In: Proceedings of the Great Lakes Symposium on VLSI (2005)

  17. Chen, H., Lee, D.: On crossing minimization problem. IEEE Trans. Comput. Aided Des. 17, 406–418 (1998)

    Article  Google Scholar 

  18. Chung, W.J., Smith, B., Lim, S. K.: QCA physical design with crossing minimization. In: Proceedings of the 2005 5th IEEE Conference on Nanotechnology (2005)

  19. Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: Novel designs for thermally robust coplanar crossing in QCA. In: Proceedings of the Conference on Design, Automation and Test in Europe (2006)

  20. Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23, 193–210 (2007)

  21. Graunke, C.R., Wheeler, D.I., Tougaw, D., Will, J.D.: Implementation of a crossbar network using quantum-dot cellular automata. IEEE Trans. Nanotechnol. 4(4), 435–440 (2005)

    Article  Google Scholar 

  22. Tougaw, D.: A clocking strategy for scalable and fault-tolerant QDCA signal distribution in combinational and sequential devices. In: Anderson, N.G., Bhanja, S. (eds.) Field Coupled-Nanocomputing: Paradigms, Processes, and Perspectives. Springer, Berlin Heidelberg (2014)

    Google Scholar 

  23. Tougaw, D., Khatun, M.: A scalable signal distribution network for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 12, 215–224 (2013)

    Article  Google Scholar 

  24. Hast, H., Khorbotly, S., Tougaw, D.: A signal distribution network for sequential quantum-dot cellular automata systems. IEEE Trans. Nanotechnol. 14, 1–9 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leitha and Willard Richardson Professorship of Engineering, which is provided through the Valparaiso University College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Tougaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tougaw, D., Szaday, J. & Will, J.D. A signal distribution grid for quantum-dot cellular automata. J Comput Electron 15, 446–454 (2016). https://doi.org/10.1007/s10825-015-0780-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0780-3

Keywords

Navigation