Skip to main content
Log in

On the relationship between the Wigner–Moyal approach and the quantum operator algebra of von Neumann

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper we discuss the close relationship between the Wigner–Moyal algebra and the original non-commutative quantum algebra introduced by von Neumann in 1931. We show that the “distribution function”, F(PXt) is simply the quantum mechanical density matrix for a single particle where the coordinates, X and P, are not the coordinates of a point particle, but the mean co-ordinate of a cell structure (a ‘blob’) in phase space. This provides an intrinsically non-local and non-commutative description of an individual, which only becomes a point particle in the commutative limit. In this general structure, the Wigner function appears as a transition probability amplitude which accounts for the appearance of negative values. The Moyal and Baker brackets play a significant role in the time evolution, producing the quantum Hamilton–Jacobi equation used in the Bohm approach. It is the non-commutative structure based on a symplectic geometry that generates a generalised phase space for quantum processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we are concerned with conceptual questions so the mathematical formalism will be kept as simple as possible using a two-dimensional phase space. The generalisation to a higher dimensional phase space is straightforward.

  2. We will put \(\hbar =1\) except in Sect. 2.7 where it helps the discussion to show its presence explicitly.

  3. We will follow convention and revert to lower case X and P.

  4. The eigenvalues of an idempotent operator are 1 or 0, to exist or not to exist.

  5. The distinction between left and right multiplication is necessary even in conventional quantum field theory when one deals with the Pauli and Dirac particles. The double arrow symbol (23) is used for the energy term, for example, in the Lagrangian for the Dirac field [33]. It is therefore not surprising that Eq. (22) involves energy.

References

  1. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  Google Scholar 

  2. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–123 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  3. Crumeyrolle, A.: Orthogonal and Symplectic Clifford Algebras: Spinor Structures. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  4. Hiley, B.J.: The Wigner-Moyal Approach to Relativistic Particle with Spin. in preparation (2015)

  5. Moyal, A.: Maverick Mathematician: The Life and Science of J. E. Moyal. Australian National University E Press, Canberra (2006)

    Google Scholar 

  6. Carruthers, P., Zachariasen, F.: Quantum collision theory with phase-space distributions. Rev. Mod. Phys. 55, 245–285 (1983)

    Article  MathSciNet  Google Scholar 

  7. Sellier, J.M., Nedjakov, M., Dimov, I.: An introduction to applied quantum mechanics in the Wigner Monte Carlo formalism. Phys. Rep. 577, 134 (2015)

    Article  Google Scholar 

  8. Neumann, J.V.: Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570–587 (1931)

    Article  MathSciNet  Google Scholar 

  9. Neumann, J.V.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  10. Gracia-Bondía, J.M., Várilly, J.C.: From geometric quantization to Moyal quantization. J. Math. Phys. 36, 2691–2701 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Groenewold, H.J.: Pruned quantum theory. Phys. Rep. 98, 343–365 (1983)

    Article  MathSciNet  Google Scholar 

  12. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Phys. 46, 1–46 (1928)

    Article  Google Scholar 

  13. Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. Roy. Soc. 180, 1–40 (1942)

    Article  MathSciNet  Google Scholar 

  14. Bartlett, M.S.: Negative probabilities. Proc. Camb. Philos. Soc. 41, 71–73 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sudarshan, E.C.G.: Structure of dynamical theories. Lect. Theor. Phys. 2, 143–199 (1961)

    Google Scholar 

  16. Feynman, R.P.: Negative probability. In: Hiley, B.J., Peat, D. (eds.) Quantum Implications: Essays in Honour of David Bohm, pp. 235–254. Routledge & Kegan Paul, Belmont (1987)

    Google Scholar 

  17. Bohm, D., Hiley, B.J.: On a quantum algebraic approach to a generalised phase space. Found. Phys. 11, 179–203 (1981)

    Article  MathSciNet  Google Scholar 

  18. Takabayasi, T.: The formulation of quantum mechanics in terms of ensemble in phase space. Prog. Theor. Phys. 11, 341–374 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hiley, B.J.: Time and the algebraic theory of moments. In: von Müller, A., Filk, T. (eds.) Re-thinking Time at the Interface of Physics and Philosophy: The Forgotten Present, pp. 147–175. Springer, Filzbach (2015)

    Chapter  Google Scholar 

  20. Hiley B.J.: Phase space descriptions of quantum phenomena. In: Khrennikov A. (eds) Proceedings of International Conference on Quantum Theory: Reconsideration of Foundations, 2, pp. 267–286. Växjö University Press, Växjö, Sweden (2003)

  21. de Gosson, M.: Quantum blobs. Found. Phys. 43, 1–18 (2012)

    Google Scholar 

  22. de Gosson, M.: Phase space quantization and the uncertainty principle. Phys. Lett. A 317, 365–369 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. de Gosson, M.: Uncertainty principle, phase space ellipsoids and Weyl calculus. In: Operator Theory: Advances and Applications, vol. 164, pp. 121–132. Birkhäuser, Basel (2006)

  24. Baker Jr, G.A.: Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys. Rev. 109, 2198–2206 (1958)

    Article  MathSciNet  Google Scholar 

  25. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  26. Bohr, N.: Atomic Physics and Human Knowledge. Science Editions, New York (1961)

    Google Scholar 

  27. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Mechanics. Routledge, London (1993)

    Google Scholar 

  28. Bohm, D.: Causality and Chance in Modern Physics. Routledge & Kegan Paul, London (1957)

    Book  Google Scholar 

  29. Bohm, D.: Space, time, and the quantum theory understood in terms of discrete structural process. In: Proceedings of International Conference on Elementary Particles, pp. 252–287. Kyoto (1965)

  30. Hiley, B.J.: Process, distinction, groupoids and clifford algebras: an alternative view of the quantum formalism. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes in Physics, pp. 705–750. Springer, New York (2011)

    Google Scholar 

  31. de Gosson, M.: Symplectic Geometry and Quantum Mechanics. Birkhäuser, Basel (2006)

    Book  MATH  Google Scholar 

  32. Eddington, A.S.: The Philosophy of Physical Science, p. 162. Ann Arbor Paperback, University of Michigan Press, Michigan (1958)

    Google Scholar 

  33. Ramond, P.: Field theory: a modern primer. In: Ramond, P. (ed.) Frontiers in Physics, p. 48. Benjamin, Reading (1981)

    Google Scholar 

  34. Dahl, J.P.: Dynamical equations for the Wigner functions. In: Hinze, J. (ed.) Energy Storage and Redistribution in Molecules, pp. 557–571. Plenum, New York (1983)

    Chapter  Google Scholar 

  35. Brown, M.R., Hiley, B.J.: Schrödinger revisited: an algebraic approach quant-ph/0005026

  36. Hiley, B.J.: On the relationship between the Wigner-Moyal and Bohm approaches to quantum mechanics: a step to a more general theory? Found. Phys. 40, 356–367 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hiley, B.J., Callaghan, R.E.: Clifford algebras and the Dirac-Bohm quantum Hamilton-Jacobi equation. Found. Phys. 42, 192–208 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gromov, M.: Pseudoholomorphic curves in symplectic manifolds. Invent. Math. 82, 307–347 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  39. de Gosson, Maurice, Luef, Franz: Symplectic capacities and the geometry of uncertainty: the irruption of symplectic topology in classical and quantum mechanics. Phys. Rep. 484, 131–179 (2009)

    Article  MathSciNet  Google Scholar 

  40. Bohm, D., Davies, P.G., Hiley, B.J.: Algebraic quantum mechanics and pre-geometry. In: Adenier, G., Khrennikov, A. (eds) AIP Conference Proceedings, 810, Quantum Theory: Reconsideration of Foundations–3, Växjö, 2005. Nieuwenhuizen, Theo., pp. 314–324. AIP, New York (2006)

Download references

Acknowledgments

I would like to thank Fabio Frescura for many fruitful discussions and for drawing my attention to the von Neumann paper in the first place. I would also like to thank Maurice de Gosson for his help in my struggle to understand the deep topological structures that lie in symplectic geometry. I would also like to thank the members of the TPRU for their many helpful comments as this work unfolded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hiley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiley, B.J. On the relationship between the Wigner–Moyal approach and the quantum operator algebra of von Neumann. J Comput Electron 14, 869–878 (2015). https://doi.org/10.1007/s10825-015-0728-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0728-7

Keywords

Navigation