Skip to main content
Log in

A Deterministic approach to noise in a non-equilibrium electron–phonon system based on the Boltzmann equation

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A deterministic model for electron velocity fluctuations in a non-equilibrium bulk electron–phonon system is presented. The model is based on the spherical harmonics expansion of the system of the two coupled Boltzmann equations for electrons and phonons. Bulk GaN at 300 K ambient temperature is selected as a model system. The Langevin approach is used for noise calculations, and expressions for the power spectral density of the electron velocity fluctuations are presented in the paper. Convergence behavior of the model is discussed in detail. Results of the developed noise model are verified against a consistent Monte Carlo model, and excellent agreement is obtained in the range of frequencies, where the Monte Carlo method yields reliable results. Introduction of nonequilibrium phonons substantially increases the electron noise temperature at frequencies below 100 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shank, C., Zakharchenya, B.: Spectroscopy of Nonequilibrium Electrons and Phonons, Ser. Modern Problems in Condensed Matter Sciences. North-Holland, Amsterdam (1992)

    Google Scholar 

  2. Kocevar, P.: Hot phonon dynamics. Physica 134B, 155–163 (1985)

    Google Scholar 

  3. Rieger, M., Kocevar, P., Lugli, P., Bordone, P., Reggiani, L., Goodnick, S.M.: Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. II. Non-Ohmic transport in n-type gallium arsenide. Phys. Rev. B 39, 7866–7875 (1989)

    Article  Google Scholar 

  4. Ramonas, M., Matulionis, A., Liberis, J., Eastman, L.F., Chen, X., Sun, Y.-J.: Hot-phonon effect on power dissipation in a biased AlGaN/AlN/GaN channel. Phys. Rev. B 71, 075 324-1–075 324-8 (2005)

    Article  Google Scholar 

  5. Matulionis, A.: Electron density window for best frequency performance, lowest phase noise and slowest degradation of GaN heterostructure field-effect transistors. Semicond. Sci. Technol. 28(7), 074007 (2013)

    Article  Google Scholar 

  6. Hartnagel, H., Katilius, R., Matulionis, A.: Microwave Noise in Semiconductor Devices. Wiley, New York (2001)

    Google Scholar 

  7. Starikov, E., Shiktorov, P., Gružinskis, V., Reggiani, L., Varani, L., Vaissiére, J.C., Palermo, C.: Monte Carlo calculations of hot-electron transport and diffusion noise in GaN and InN. Semicond. Sci. Technol. 20(3), 279 (2005)

  8. Bordone, P., Reggiani, L., Varani, L., Kuhn, T.: Hot-phonon effect on noise and diffusion in GaAs. Semicond. Sci. Technol. 9(5S), 623 (1994)

    Article  Google Scholar 

  9. Ramonas, M., Jungemann, C.: “Spherical harmonics solver for coupled hot-electron-hot-phonon system”. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 360–363. Sep 2013

  10. Galler, M., Schürrer, F.: Multigroup equations to the hot-electron hot-phonon system in III-V compound semiconductors. Comput. Methods Appl. Mech. Eng. 194(2526), 2806–2818 (2005)

    Article  MATH  Google Scholar 

  11. Kogan, S.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  12. Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, Wien (1989)

    Book  Google Scholar 

  13. Ridley, B.K.: Quantum Processes In Semiconductors, 2nd edn. Clarendon Press, Oxford (1988)

    Google Scholar 

  14. Jungemann, C.: “A deterministic solver for the Langevin Boltzmann equation including the Pauli principle”. SPIE 6600, 660 007-1–660 007-12 (2007)

    Google Scholar 

  15. Jungemann, C.: A deterministic approach to RF noise in silicon devices based on the Langevin Boltzmann equation. IEEE Trans. Electron Dev. 54(5), 1185–1192 (2007)

    Article  Google Scholar 

  16. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 4th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  17. Bonani, F., Ghione, G.: Noise in Semiconductor Devices, Modeling and Simulation, ser. Advanced Microelectronics. Springer, Berlin (2001)

    Google Scholar 

  18. Hennacy, K.A., Goldsman, N.: A Generalized Legendre polynimial/sparse matrix approach for determining the distribution function in non-polar semiconductors. Solid-State Electron. 36, 869–877 (1993)

    Article  Google Scholar 

  19. Jungemann, C., Pham, A.-T., Meinerzhagen, B., Ringhofer, C., Bollhöfer, M.: Stable discretization of the Boltzmann equation based on spherical harmonics, box integration, and a maximum entropy dissipation principle. J. Appl. Phys. 100, 024 502-1–024 502-13 (2006)

    Article  Google Scholar 

  20. Branin, F.H.: Network sensitivity and noise analysis simplified. IEEE Trans. Circuit Theory 20, 285–288 (1973)

    Article  Google Scholar 

  21. Tsen, K.T., Kiang, J.G., Ferry, D.K., Morkoç, H.: Subpicosecond time-resolved Raman studies of LO phonons in GaN: dependence on photoexcited carrier density. Appl. Phys. Lett. 89(11), 112111 (2006)

    Article  Google Scholar 

  22. Ramonas, M., Matulionis, A., Rota, L.: Monte Carlo simulation of hot-phonon and degeneracy effects in the AlGaN/GaN two-dimensional electron gas channel. Semicond. Sci. Technol. 18(2), 118 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the “Deutsche Forschungsgemeinschaft” (DFG) is gratefully acknowledged. M. Ramonas is grateful for the partial funding by the European Social Fund under the Global Grant measure (Grant N VP1-3.1-ŠMM-07-K-03-038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Ramonas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramonas, M., Jungemann, C. A Deterministic approach to noise in a non-equilibrium electron–phonon system based on the Boltzmann equation. J Comput Electron 14, 43–50 (2015). https://doi.org/10.1007/s10825-014-0627-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-014-0627-3

Keywords

Navigation