Skip to main content
Log in

Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Charge and thermal conductivities are the most important parameters of carbon nanomaterials as candidates for future electronics. In this paper we address the effects of Anderson type disorder in long semiconductor carbon nanotubes (CNTs) to electron charge conductivity and lattice thermal conductivity using the atomistic Green function approach. The electron and phonon transmissions are analyzed as a function of the length of the disordered nanostructures. The thermal conductance as a function of temperature is calculated for different lengths. Analysis of the transmission probabilities as a function of length of the disordered device shows that both electrons and phonons with different energies display different transport regimes, i.e. quasi-ballistic, diffusive and localization regimes coexist. In the light of the results we discuss heating of the semiconductor device in electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Latil, S., Roche, S., Mayou, D., Charlier, J.-C.: Mesoscopic transport in chemically doped carbon nanotubes. Phys. Rev. Lett. 92, 256805 (2004)

    Article  Google Scholar 

  2. Roche, S., Jiang, J., Triozon, F., Saito, R.: Conductance and coherence lengths in disordered carbon nanotubes: role of lattice defects and phonon vibrations. Phys. Rev. B 72, 113410 (2005)

    Article  Google Scholar 

  3. Charlier, J.-C., Blase, X., Roche, S.: Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677 (2007)

    Article  Google Scholar 

  4. Lherbier, A., Biel, B., Niquet, Y.-M., Roche, S.: Transport length scales in disordered graphene-based materials: strong localization regimes and dimensionality effects. Phys. Rev. Lett. 100, 036803 (2008)

    Article  Google Scholar 

  5. White, C.T., Todorov, T.N.: Nature 393, 240 (1998)

    Article  Google Scholar 

  6. Dresselhaus, M.S., Dresselhaus, G., Hofmann, M.: Other one-dimensional systems and thermal properties. J. Vac. Sci. Technol. B 26, 1613 (2008)

    Article  Google Scholar 

  7. Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., Garnett, E.C., Najarian, M., Majumdar, A., Yang, P.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163 (2008)

    Article  Google Scholar 

  8. Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W.A., Heath, J.R.: Silicon nanowires as efficient thermoelectric materials. Nature 451, 168 (2008)

    Article  Google Scholar 

  9. Markussen, T., Jauho, A.P., Brandbyge, M.: Electron and phonon transport in silicon nanowires: atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009)

    Article  Google Scholar 

  10. Chang, C.W., Okawa, D., Garcia, H., Yuzvinsky, T.D., Majumdar, A., Zettl, A.: Tunable thermal links. Appl. Phys. Lett. 90, 193114 (2007)

    Article  Google Scholar 

  11. Pop, E., Mann, D., Wang, Q., Goodson, K., Dai, H.: Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6, 96 (2006)

    Article  Google Scholar 

  12. Pop, E., Mann, D.A., Goodson, K.E., Dai, H.: Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates. J. Appl. Phys. 101, 093710 (2007)

    Article  Google Scholar 

  13. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  14. Nika, D.L., Pokatilov, E.P., Askerov, A.S., Balandin, A.A.: Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys. Rev. B 79(15), 155413 (2009)

    Article  Google Scholar 

  15. Sevinçli, H., Cuniberti, G.: Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons. Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  16. Li, W., Sevinçli, H., Cuniberti, G., Roche, S.: Phonon transport in large scale carbon-based disordered materials: implementation of an efficient order-N and real-space Kubo methodology. Phys. Rev. B 82, 041410 (2010)

    Article  Google Scholar 

  17. Ghosh, S., Bao, W., Nika, D.L., Subrina, S., Pokatilov, E.P., Lau, C.N., Balandin, A.A., Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555 (2010)

    Article  Google Scholar 

  18. Sevinçli, H., Li, W., Mingo, N., Cuniberti, G., Roche, S.: Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets. Phys. Rev. B 84, 205444 (2011)

    Article  Google Scholar 

  19. Sevik, C., Sevinçli, H., Cuniberti, G., Çagin, T.: Phonon engineering in carbon nanotubes by controlling defect concentration. Nano Lett. 11, 4971 (2011)

    Article  Google Scholar 

  20. Li, W, Sevinçli, H., Roche, S., Cuniberti, G.: Efficient linear scaling method for computing the thermal conductivity of disordered materials. Phys. Rev. B 83, 155416 (2011)

    Article  Google Scholar 

  21. Balandin, A.A.: Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)

    Article  Google Scholar 

  22. Haskins, J., Kınacı, A., Sevik, C., Sevinçli, H., Cuniberti, G., Çagin, T.: Control of thermal and electronic transport in defect-engineered graphene nanoribbons. ACS Nano 5, 3779 (2011)

    Article  Google Scholar 

  23. Pop, E., Varshney, V., Roy, A.K.: Thermal properties of graphene: fundamentals and applications. Mater. Res. Soc. Bull. 37, 1273 (2012)

    Article  Google Scholar 

  24. Sevinçli, H, Sevik, C., Çagin, T., Cuniberti, G.: A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons. Scientific Reports 3 (2013)

  25. Bae, M.H., Li, Z., Aksamija, Z., Martin, P.N., Xiong, F., Ong, Z.Y., Knezevic, I., Pop, E.: Ballistic to diffusive crossover of heat flow in graphene ribbons. Nat. Commun. 4, 1734 (2013)

    Article  Google Scholar 

  26. Savić, I., Mingo, N., Stewart, D.A.: Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable? Phys. Rev. Lett. 101, 165502 (2008)

    Article  Google Scholar 

  27. Stewart, D.A., Savić, I., Mingo, N.: First-principles calculation of the isotope effect on boron nitride nanotube thermal conductivity. Nano Lett. 9, 81 (2009)

    Article  Google Scholar 

  28. Chang, C.W., Fennimore, A.M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D., Majumdar, A., Zettl, A.: Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 97, 085901 (2006)

    Article  Google Scholar 

  29. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  MATH  Google Scholar 

  30. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F, Met. Phys. 14, 1205 (1985)

    Article  Google Scholar 

  31. Lopez Sancho, M.P., Lopez Sancho, J.M., Rubio, J.: Highly convergent schemes for the calculation of bulk and surface green functions. J. Phys. F, Met. Phys. 15, 851 (1985)

    Article  Google Scholar 

  32. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  33. Cuniberti, G., Fagas, G., Richter, K. (eds.): Introducing Molecular Electronics. Lecture Notes in Physics, vol. 680. Springer, Berlin (2005)

    Google Scholar 

  34. Ryndyk, D.A., Gutiérrez, R., Song, B., Cuniberti, G.: Green function techniques in the treatment of quantum transport at the molecular scale. In: Energy Flow Dynamics in Biomaterial Systems, p. 213. Springer, Berlin (2009)

    Chapter  Google Scholar 

  35. Cuevas, J.C., Scheer, E.: Molecular Electronics: An Introduction to Theory and Experiment. World Scientific, Singapore (2010)

    Book  Google Scholar 

  36. Gunlycke, D., Lawler, H.M., White, C.T.: Room-temperature ballistic transport in narrow graphene strips. Phys. Rev. B 75, 085418 (2007)

    Article  Google Scholar 

  37. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press, London (1988)

    Google Scholar 

  38. Zimmermann, J., Pavone, P., Cuniberti, G.: Vibrational modes and low-temperature thermal properties of graphene and carbon nanotubes: minimal force-constant model. Phys. Rev. B 78, 045410 (2008)

    Article  Google Scholar 

  39. Yamada, M., Yamakita, Y., Ohno, K.: Phonon dispersions of hydrogenated and dehydrogenated carbon nanoribbons. Phys. Rev. B 77, 054302 (2008)

    Article  Google Scholar 

  40. Angelescu, D., Cross, M., Roukes, M.: Heat transport in mesoscopic systems. Superlattices Microstruct. 23, 673 (1998)

    Article  Google Scholar 

  41. Rego, L.G.C., Kirczenow, G.: Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232 (1998)

    Article  Google Scholar 

  42. Ozpineci, A., Ciraci, S.: Quantum effects of thermal conductance through atomic chains. Phys. Rev. B 63, 125415 (2001)

    Article  Google Scholar 

  43. Mingo, N., Yang, L.: Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003)

    Article  Google Scholar 

  44. Segal, D., Nitzan, A., Hänggi, P.: Thermal conductance through molecular wires. J. Chem. Phys. 119, 6840 (2003)

    Article  Google Scholar 

  45. Mingo, N.: Anharmonic phonon flow through molecular-sized junctions. Phys. Rev. B 74, 125402 (2006)

    Article  Google Scholar 

  46. Wang, J.S., Wang, J., Zeng, N.: Nonequilibrium Green’s function approach to mesoscopic thermal transport. Phys. Rev. B 74, 033408 (2006)

    Article  Google Scholar 

  47. Yamamoto, T., Watanabe, K.: Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Phys. Rev. Lett. 96, 255503 (2006)

    Article  Google Scholar 

  48. Galperin, M., Nitzan, A., Ratner, M.A.: Heat conduction in molecular transport junctions. Phys. Rev. B 75, 155312 (2007)

    Article  Google Scholar 

  49. Wang, J.S., Wang, J., Lü, J.T.: Quantum thermal transport in nanostructures. Eur. Phys. J. B 62, 381 (2008)

    Article  Google Scholar 

  50. Dubi, Y., Di Ventra, M.: Heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011)

    Article  Google Scholar 

  51. Nikolić, B.K., Saha, K.K., Markussen, T., Thygesen, K.S.: First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes. J. Comput. Electron. 11, 78 (2012)

    Article  Google Scholar 

  52. Meir, Y., Wingreen, N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge fruitful discussion with R. Gutierrez. This work was supported by the European Union project “Carbon nanotube devices at the quantum limit” (CARDEQ) under contract No. IST-021285-2, by the Deutsche Forschungsgemeinschaft within the priority program “Nanostructured Thermoelectrics” (Grant No. SPP 1386) and from the German Excellence Initiative via the Cluster of Excellence 1056 “Center for Advancing Electronics Dresden” (cfAED). Computing time provided by the ZIH at the Dresden University of Technology is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sevinçli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevinçli, H., Lehmann, T., Ryndyk, D.A. et al. Comparison of electron and phonon transport in disordered semiconductor carbon nanotubes. J Comput Electron 12, 685–691 (2013). https://doi.org/10.1007/s10825-013-0539-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0539-7

Keywords

Navigation