Skip to main content
Log in

Carrier scattering and impact ionization in bilayer graphene

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Transport properties of carriers in bilayer graphene (BLG) were studied. Several analytical models were developed for drift velocity, scattering rate and ionization coefficient of BLG for the first time. Then, the joint effect of temperature and potential difference of layers were addressed on the modeled parameters. The accuracy of the proposed models for drift velocity and scattering rate was verified by the simulation results of published works. In addition, the analytical results of ionization coefficient of BLG were compared with those of silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Schwierz, F.: Graphene transistors. Nat. Nanotechnol. 5(7), 487–496 (2010)

    Article  Google Scholar 

  2. Sako, R., Hosokawa, H., Tsuchiya, H.: Computational study of edge configuration and quantum confinement effects on graphene nanoribbon transport. IEEE Electron Device Lett. 32(1), 6–8 (2011)

    Article  Google Scholar 

  3. Ouyang, Y., Campbell, P., Guo, J.: Analysis of ballistic monolayer and bilayer graphene field-effect transistors. Appl. Phys. Lett. 92(6), 063120 (2008). doi:10.1063/1.2841664

    Article  Google Scholar 

  4. Cheli, M., Fiori, G., Iannaccone, G.: A semianalytical model of bilayer-graphene field-effect transistor. IEEE Trans. Electron Devices 56(12), 2979–2986 (2009)

    Article  Google Scholar 

  5. Guinea, F., Neto, A.C., Peres, N.: Electronic properties of stacks of graphene layers. Solid State Commun. 143(1–2), 116–122 (2007). doi:10.1016/j.ssc.2007.03.053

    Article  Google Scholar 

  6. Abergel, D.S.L., Fal’ko, V.I.: Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007). doi:10.1103/PhysRevB.75.155430

    Article  Google Scholar 

  7. Castro, E.V., Novoselov, K.S., Morozov, S.V., Peres, N.M.R., dos Santos, J.M.B.L., Nilsson, J., Guinea, F., Geim, A.K., Neto, A.H.C.: Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007). doi:10.1103/PhysRevLett.99.216802

    Article  Google Scholar 

  8. McCann, E.: Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006). doi:10.1103/PhysRevB.74.161403

    Article  Google Scholar 

  9. Maes, W., De Meyer, K., Van Overstraeten, R.: Impact ionization in silicon: A review and update. Solid-State Electron. 33(6), 705–718 (1990)

    Article  Google Scholar 

  10. Wolff, P.A.: Theory of electron multiplication in silicon and germanium. Phys. Rev. 95, 1415–1420 (1954). doi:10.1103/PhysRev.95.1415

    Article  Google Scholar 

  11. Shockley, W.: Problems related to p-n junctions in silicon. Solid-State Electron. 2(1), 35–60 (1961). IN9–IN10, 61–67

    Article  Google Scholar 

  12. Ridley, B.K.: Lucky-drift mechanism for impact ionisation in semiconductors. J. Phys. C, Solid State Phys. 16, 3375–3388 (1983)

    Google Scholar 

  13. Li, X., Borysenko, K.M., Nardelli, M.B., Kim, K.W.: Electron transport properties of bilayer graphene. Phys. Rev. B 84, 195453 (2011). doi:10.1103/PhysRevB.84.195453

    Article  Google Scholar 

  14. Hwang, E., Das Sarma, S.: Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Phys. Rev. B 77(11). URL http://prb.aps.org/abstract/PRB/v77/i11/e115449

  15. Nilsson, J., Castro Neto, A.H., Guinea, F., Peres, N.M.R.: Electronic properties of bilayer and multilayer graphene. Phys. Rev. B 78, 045405 (2008). doi:10.1103/PhysRevB.78.045405

    Article  Google Scholar 

  16. Park, C.H., Marzari, N.: Berry phase and pseudospin winding number in bilayer graphene. Phys. Rev. B 84(20). doi:10.1103/PhysRevB.84.205440

  17. Fang, T., Konar, A., Xing, H., Jena, D.: Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008). doi:10.1103/PhysRevB.78.205403

    Article  Google Scholar 

  18. Simpson, J., Drew, H., Smolyaninova, V., Greene, R., Robson, M., Biswas, A., Rajeswari, M.: Temperature-dependent scattering rate and optical mass of ferromagnetic metallic manganites. Phys. Rev. B 60(24), R16263–R16266 (1999). doi:10.1103/PhysRevB.60.R16263. arXiv:cond-mat/9908419

    Article  Google Scholar 

  19. Bhattacharya, S., Mahapatra, S.: Analytical study of low-field diffusive transport in highly asymmetric bilayer graphene nanoribbon. IEEE Trans. Nanotechnol. 10(3), 409–416 (2011). doi:10.1109/TNANO.2010.2043443

    Article  Google Scholar 

  20. Fang, T., Konar, A., Xing, H., Jena, D.: Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008)

    Article  Google Scholar 

  21. Ballinger, R.A., et al.: Impact ionization thresholds in semiconductors. J. Phys. C: Solid State Phys. 6, 2573 (1973)

    Article  Google Scholar 

  22. Overstraeten, R.V., Man, H.D.: Measurement of the ionization rates in diffused silicon p-n junctions. Solid-State Electron. 13(5), 583–608 (1970). doi:10.1016/0038-1101(70)90139-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Management Centre (RMC) of Universiti Teknologi Malaysia (UTM) for providing excellent research environment in which to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razali Ismail.

Appendix

Appendix

Plugging (7) in (6) and converting summation into integral:

$$\begin{aligned} \frac{1}{\tau_m(E)} =&\frac{2}{\hbar\pi} \biggl( \frac{D_A^2\hbar\omega _{\beta}}{\rho_m A v_s^2} \biggr) N_{\beta} \\ &{}\times \int_0^{\infty} \delta \biggl(E_c+\frac{\hbar}{2m^*}\bigl(|k|-k_g\bigr)^2-E \biggr)kdk \\ & {}\times\frac{1}{2}\int_0^{2\pi}(1-\cos \theta) (1+\cos\theta)d\theta \end{aligned}$$
(23)

According to the definition of Dirac delta function:

$$ \int\delta\bigl(x-x^{\prime}\bigr)f\bigl(x^{\prime} \bigr)dx^{\prime}=f(x) $$
(24)

the (23) can be rewritten as:

$$\begin{aligned} \frac{1}{\tau_m(E)} =&\frac{A}{2\hbar} \biggl(\frac{D_A^2\hbar\omega _{\beta}}{\rho_m A v_s^2} \biggr) N_{\beta}\sqrt{\frac {2m^*}{E-E_c}} \\ &{}\times\int_0^{\infty}\delta(s- \sqrt{E-E_c}) \biggl(\frac{\sqrt{2m^*}}{\hbar}s+k_g\biggr)ds \end{aligned}$$
(25)

where

$$ s=\frac{\hbar}{\sqrt{2m^*}}\bigl(|k|-k_g\bigr) $$
(26)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeidmanesh, M., Ghadiry, M.H., Khaledian, M. et al. Carrier scattering and impact ionization in bilayer graphene. J Comput Electron 13, 180–185 (2014). https://doi.org/10.1007/s10825-013-0497-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-013-0497-0

Keywords

Navigation