Skip to main content

Advertisement

Log in

Piezoresistive effect in p-type silicon classical nanowires at high uniaxial strains

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The longitudinal piezoresistance of the p-type silicon nanowires oriented along the 〈100〉, 〈110〉 and 〈111〉 crystallographic directions is examined at high uniaxial compressive and tensile elastic stresses ∼1 GPa. The detail research on base of the six-band model of the valence band involves quantum kinetic approach to calculation of the kinetic coefficients (conductivity, mobility) in classical nanowires with diameter that is significant higher the de Broglie wavelength of the band carriers. Two mechanisms of scattering (charged impurities and longitudinal acoustic phonons) are investigated. Qualitative agreement has been reached between calculated and known experimental data. A quantitative agreement with experiment is obtained in assumption about a formation of the stress concentration (stress raisers) in regions of nanowires that are depleted by the band carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nakamura, K., Viet Dao, D., Isono, Y., Toriyama, T., Sugiyama, S.: Electronic states and piezoresistivity in silicon nanowires. In: Prete, P. (ed.) INTECH (2010). ISBN: 978-953-7619-79-4. Available from: http://sciyo.com/articles/show/title/electronic-states-and-piezoresistivity-in-silicon-nanowires

    Google Scholar 

  2. Toriyama, T., Funai, D., Sugiyama, S.: Piezoresistance measurement on single crystal silicon nanowires. J. Appl. Phys. 93, 561–565 (2003)

    Article  Google Scholar 

  3. Toriyama, T., Sugiyama, S.: Single crystal silicon piezoresistive nano-wire bridge. Sens. Actuators A, Phys. 108, 244–249 (2003)

    Article  Google Scholar 

  4. He, R.R., Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)

    Article  Google Scholar 

  5. Reck, K., Richter, J., Hansen, O., Thomsen, E.V.: Piezoresistive effect in top-down fabricated silicon nanowires. In: IEEE 21st International Conference on Micro Electro Mechanical Systems, pp. 717–720 (2008)

    Chapter  Google Scholar 

  6. Reck, K., Richter, J., Hansen, O., Thomsen, E.V.: Increased piezoresistive effect in crystalline and polycrystalline Si nanowires. In: Nanotechnology 2008: Materials, Fabrication, Particles, and Characterization—Technical Proceedings of the 2008 NSTI Nanotechnology Conference and Trade Show, vol. 1, pp. 920–923 (2008)

    Google Scholar 

  7. Neuzil, P., Wong, C.C., Reboud, J.: Electrically controlled giant piezoresistance in silicon nanowires. Nano Lett. 10, 1248–1252 (2010)

    Article  Google Scholar 

  8. Cao, J.X., Gong, X.G., Wu, R.Q.: Giant piezoresistance and its origin in Si(111) nanowires: First-principles calculations. Phys. Rev. B 75, 233302 (2007)

    Article  Google Scholar 

  9. Rowe, A.C.H.: Silicon nanowires feel the pinch. Nat. Nanotechnol. 3, 311–312 (2008)

    Article  Google Scholar 

  10. Nakamura, K., Isono, Y., Toriyama, T., Sugiyama, S.: First-principles simulation on orientation dependence of piezoresistance properties in silicon nanowires. Jpn. J. Appl. Phys. 48, 06FG09 (2009)

    Article  Google Scholar 

  11. Nakamura, K., Dao, Dz.V., Tung, B.Th., Toriyama, T., Sugiyama, S.: Piezoresistive effect in silicon nanowires—a comprehensive analysis based on first-principles calculations. In: International Symposium on Micro-NanoMechatronics and Human Science, pp. 38–43 (2009)

    Chapter  Google Scholar 

  12. Pramanik, C., Banerjee, S., Saha, H., Sarkar, C.K.: Piezoresistivity of silicon quantum well wire. Nanotechnology 17, 3209–3214 (2006)

    Article  Google Scholar 

  13. Milne, J.S., Arscott, S., Renner, C., Rowe, A.C.H.: On giant piezoresistance effects in silicon nanowires and microwires. Phys. Rev. Lett. 105, 226802 (2010)

    Article  Google Scholar 

  14. Heinzel, Th.: Mesoscopic Electronics in Solid State Nanostructures. Wiley-VCH, New York (2007)

    Google Scholar 

  15. Hasegawa, H.: Theory of cyclotron resonance in strained silicon crystals. Phys. Rev. 29, 1029–1040 (1963)

    Article  Google Scholar 

  16. Hensel, J.C., Feher, G.: Cyclotron resonance experiments in uniaxially stressed silicon: valence band inverse mass parameters and deformation potentials. Phys. Rev. 129, 1041–1062 (1963)

    Article  MATH  Google Scholar 

  17. Bir, G.L., Pikus, G.E.: Symmetry and Strain Induced Effects in Semiconductors. Wiley, New York (1974)

    Google Scholar 

  18. Kim, C.K., Cardona, M., Rodriguez, S.: Effect of free carriers on the elastic constants of p-type silicon and germanium. Phys. Rev. B 13, 5429–5441 (1976)

    Article  Google Scholar 

  19. Kozlovskiy, S.I., Nedostup, V.V., Boiko, I.I.: First-order piezoresistance coefficients in heavily doped p-type silicon crystals. Sens. Actuators A, Phys. 133, 72–81 (2007)

    Article  Google Scholar 

  20. Boiko, I.I.: Kinetics of Electron Gas That Interacts with Fluctuating Potential. Naukova Dumka, Kiev (1993) (in Russian)

    Google Scholar 

  21. Boiko, I.I., Sirenko, Yu.M., Vasilopoulos, P.: Dielectric formalism for a quasi-one dimensional electron gas. 1. Quantum transport equation. Phys. Rev. B 43, 7216–7223 (1991)

    Article  Google Scholar 

  22. Boiko, I.I., Kozlovskiy, S.I.: Investigation of conductivity and piezoresistance of n-type silicon on basis of quantum kinetic equation and model distribution function. Sens. Actuators A, Phys. 147, 17–33 (2008)

    Article  Google Scholar 

  23. Hoffmann, S., Moser, U.B., Michler, J., Christiansen, S.H., Schmidt, V., Senz, S., Werner, P., Glosele, U., Ballif, Ch.: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires. Nano Lett. 6(4), 622–625 (2006)

    Article  Google Scholar 

  24. Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors. Physics and Material Properties. Springer, Berlin (2002)

    Google Scholar 

  25. Bir, G.L., Normantas, E., Picus, G.E.: Galvanomagnetic effects in semiconductors with degenerated bands. Sov. Phys., Solid State 4(5), 867–877 (1962)

    Google Scholar 

  26. Freund, L.B., Suresh, S.: Thin Film Materials: Stress, Defect Formation, and Surface Evolution. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kozlovskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozlovskiy, S.I., Sharan, N.N. Piezoresistive effect in p-type silicon classical nanowires at high uniaxial strains. J Comput Electron 10, 258–267 (2011). https://doi.org/10.1007/s10825-011-0362-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-011-0362-y

Keywords

Navigation