Skip to main content
Log in

Unified simulation of transport and luminescence in optoelectronic nanostructures

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Computer simulation of microscopic transport and light emission in semiconductor nanostructures is often restricted to an isolated system of a single quantum well, wire or dot. In this work we report on the development of a simulator for devices with various kinds of nanostructures which exhibit quantization in different dimensionalities. Our approach is based upon the partition of the carrier densities within each quantization region into bound and unbound populations. A bound carrier is treated fully coherent in the directions of confinement, whereas it is assumed to be totally incoherent with a motion driven by classical drift and diffusion in the remaining directions. Coupling of the populations takes place through electrostatics and carrier capture. We illustrate the applicability of our approach with a well-wire structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferry, D.K.: Quo vadis nanoelectronics? Phys. Stat. Sol. (C) 5, 17–22 (2008)

    Article  Google Scholar 

  2. Tian, B., Zheng, X., Kempa, T.J., Fang, Y., Yu, N., Yu, G., Huang, J., Lieber, C.M.: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007)

    Article  Google Scholar 

  3. Choi, H.J., Johnson, J.C., He, R., Lee, S.K., Kim, F., Pauzauskie, P., Goldberger, J., Saykally, R.J., Yang, P.: Self-organized gan quantum wire uv lasers. J. Phys. Chem. B 107, 8721–8725 (2003)

    Article  Google Scholar 

  4. Rafailov, E.U., Cataluna, M.A., Sibbett, W.: Mode-locked quantum-dot lasers. Nature Phot. 1, 395–401 (2007)

    Article  Google Scholar 

  5. Noda, S.: Seeking the ultimate nanolaser. Science 314, 260–261 (2006)

    Article  Google Scholar 

  6. Robledo, L., Elzerman, J., Jundt, G., Atatüre, M., Högele, A., Fält, S., Imamoglu, A.: Conditional dynamics of interacting quantum dots. Science 320, 772–775 (2008)

    Article  Google Scholar 

  7. Liu, Y., Neophytou, N., Klimeck, G., Lundstrom, M.S.: Band-structure effects on the performance of iii-v ultrathin-body mosfets. IEEE Trans. Electron. Dev. 55, 1116–1122 (2008)

    Article  Google Scholar 

  8. Aeberhard, U., Morf, R.H.: Microscopic non-equilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125,343 (2008)

    Article  Google Scholar 

  9. Bufler, F.M., Gautschi, R., Erlebach, A.: Monte carlo stress engineering of scaled (110) and (100) bulk p-mosfets. IEEE Electr. Device L. 29, 369–371 (2008)

    Article  Google Scholar 

  10. Girndt, A., Jahnke, F., Knorr, A., Koch, S.W., Chow, W.W.: Multi-band bloch equations and gain spectra of highly excited ii-vi semiconductor quantum wells. Phys. Stat. Sol. (B) 202, 725–739 (1997)

    Article  Google Scholar 

  11. Kira, M., Jahnke, F., Hoyer, W., Koch, S.W.: Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures. Prog. Quant. Electron. 23, 189–279 (1999)

    Article  Google Scholar 

  12. Loeser, M., Witzigmann, B.: Multi-dimensional electro-opto-thermal modeling of broadband optical devices. IEEE J. Quant. Electron. 44, 505–514 (2008)

    Article  Google Scholar 

  13. Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  14. Weetman, P., Wartak, M.S.: Wigner function modeling of quantum well semiconductor lasers using classical electromagnetic field coupling. J. Appl. Phys. 93, 9562–9575 (2003)

    Article  Google Scholar 

  15. Kane, E.O.: Energy band theory. In: Paul, W. (ed.) Handbook on Semiconductors, vol. 1, pp. 194–217. North Holland, Amsterdam (1982)

    Google Scholar 

  16. Trellakis, A., Zibold, T., Andlauer, T., Birner, S., Smith, R.K., Morschl, R., Vogl, P.: The 3d nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 5, 285–289 (2006)

    Article  Google Scholar 

  17. Weman, H., Martinet, E., Rudra, A., Kapon, E.: Selective carrier injection into v-groove quantum wires. Appl. Phys. Lett. 73, 2959 (1998)

    Article  Google Scholar 

  18. Smith, R.A.: Semiconductors. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  19. Piprek, J.: Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation. Academic Press, San Diego (2003)

    Google Scholar 

  20. Schroeder, D.: Modelling of Interface Carrier Transport for Device Simulation. Springer, Berlin (1994)

    MATH  Google Scholar 

  21. Wu, C.M., Yang, E.S.: Carrier transport across heterojunction interface. Solid-State Electron. 22, 241–248 (1979)

    Article  Google Scholar 

  22. Grupen, M., Hess, K.: Simulation of carrier transport and nonlinearities in quantum-well laser diodes. IEEE J. Quant. Electron. 34(1), 120–140 (1998)

    Article  Google Scholar 

  23. Veprek, R.G., Steiger, S., Witzigmann, B.: Ellipticity and the spurious solution problem of k⋅p envelope equations. Phys. Rev. B 76, 165,320 (2007)

    Article  Google Scholar 

  24. Veprek, R.G., Steiger, S., Witzigmann, B.: Reliable kp band structure calculation for nanostructures using finite elements. J. Comput. Electron. (2008, this issue)

  25. Chuang, S.L.: Physics of Optoelectronic Devices. Wiley, New York (1995)

    Google Scholar 

  26. Haug, H., Koch, S.W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2004)

    Google Scholar 

  27. Kerkhoven, T.: On the scharfetter-gummel box-method. In: S. Selberherr, H. Stippel, E. Strasser (eds.) Simulation of Semiconductor Devices and Processes, vol. 5, p. 237 (1993)

  28. Schenk, O., Gaertner, K.: Solving unsymmetric sparse systems of linear equations with pardiso. J. Future Gen. Comp. Syst. 20, 475–487 (2004)

    Article  Google Scholar 

  29. Davis, T.A.: Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004)

    Article  MATH  Google Scholar 

  30. Roellin, S.: Parallel iterative solvers in computational electronics. PhD Thesis ETH No. 15859. Hartung-Gorre, Konstanz (2005)

  31. de Mari, A.: An accurate numerical steady-state one-dimensional solution of the p-n junction. Solid-State Electron. 11, 33–58 (1968)

    Article  Google Scholar 

  32. Trellakis, A., Galick, A.T., Pacelli, A., Ravaioli, U.: Iteration scheme for the solution of the two-dimensional schroedinger-poisson equations in quantum structures. J. Appl. Phys. 81, 7880–7884 (1997)

    Article  Google Scholar 

  33. Arora, N.D., Hauser, J.R., Roulston, D.J.: Electron and hole mobilities in silicon as a function of concentration and temperature. IEEE Trans. Electron Devices 29, 292–295 (1982)

    Article  Google Scholar 

  34. Sotoodeh, M., Khalid, A.H., Rezazadeh, A.: Empirical low-field mobility model for iii-v compounds applicable in device simulation codes. J. Appl. Phys. 87, 2890–2900 (2000)

    Article  Google Scholar 

  35. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for iii-v compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  Google Scholar 

  36. Adachi, S.: Properties of Group-IV, II-V and II-VI Semiconductors. Wiley, New York (2005)

    Google Scholar 

  37. Witzigmann, B., Bäcker, A., Odermatt, S.: Physics and simulation of vertical-cavity surface-emitting lasers. J. Comput. Theoret. Nanosci. 5, 1–14 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Steiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiger, S., Veprek, R.G. & Witzigmann, B. Unified simulation of transport and luminescence in optoelectronic nanostructures. J Comput Electron 7, 509–520 (2008). https://doi.org/10.1007/s10825-008-0261-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-008-0261-z

Keywords

Navigation