Skip to main content
Log in

Electronic properties of carbon nanotubes calculated from density functional theory and the empirical π-bond model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The validity of the DFT models implemented by FIREBALL for CNT electronic device modeling is assessed. The effective masses, band gaps, and transmission coefficients of semi-conducting, zigzag, (n,0) carbon nanotubes (CNTs) resulting from the ab-initio tight-binding density functional theory (DFT) code FIREBALL and the empirical, nearest-neighbor π-bond model are compared for all semiconducting n values 5≤n≤35. The DFT values for the effective masses differ from the π-bond values by ±9% over the range of n values, 17≤n≤29, most important for electronic device applications. Over the range 13≤n≤35, the DFT bandgaps are less than the empirical bandgaps by 20–180 meV depending on the functional and the n value. The π-bond model gives results that differ significantly from the DFT results when the CNT diameter goes below 1 nm due to the large curvature of the CNT. The π-bond model quickly becomes inaccurate away from the bandedges for a (10,0) CNT, and it is completely inaccurate for n≤8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keren, K., Berman, R.S., Buchstab, E., Sivan, U., Braun, E.: Sci. 302, 1380 (2003)

  2. Braun, E., Keren, K.: Adv. Phys. 53, 441 (2004)

    Google Scholar 

  3. Williams, K.A., Veenhuizen, P.T.M., de la Torre, B.G., Eritja, R., Dekker, C.: Nat. 420, 761 (2002)

  4. den Dulk, R., Williams, K.A., Veenhuizen, P.T.M., de Konig, M.C., Overhand, M., Dekker, C.: In: Fritzsche, W. (ed.) DNA-Based Molecular Electronics, vol. 725, pp. 25–31. AIP, New York (2004)

    Google Scholar 

  5. Dwyer, C., Johri, V., Cheung, M., Patwardhan, J., Lebeck, A., Sorin, D.: Nanotechnol. 15 1240 (2004)

  6. Bruque, N., Pandey, R.R., Lake, R., Wang, H., Lewis, J.: Mol. Simul. 31, 859 (2005)

    Google Scholar 

  7. Pandey, R.R., Bruque, N., Alam, K., Lake, R.: Phys. Stat. Sol. (a) 203, R5 (2006)

  8. Bruque, N.A., Alam, K., Pandey, R.R., Lake, R.K., Lewis, J.P., Wang, X., Liu, F., Ozkan, C.S., Ozkan, M., Wang, K.L.: J. Nanoelectron. Optoelectr. 1, 74 (2006)

  9. Wang, X., Liu, F., Andavan, G.T.S., Jing, X., Bruque, N., Pandey, R.R., Lake, R., Singh, K., Ozkan, M., Wang, K.L., Ozkan, C.S.: Small 2, 1356 (2006)

  10. Damle, P., Ghosh, A., Datta, S.: Phys. Rev. B 64, 201403 (2001)

    Google Scholar 

  11. Damle, P., Ghosh, A.: Datta. S.: Chem. Phys. 281, 171 (2002)

    Google Scholar 

  12. Rakshit, T., Liang, G., Ghosh, A., Datta, S.: Nano Lett. 4, 1083 (2004)

  13. Xue, Y., Datta, S., Ratner, M.A.: Chem. Phys 281, 151 (2002)

    Google Scholar 

  14. Xue, Y., Datta, S., Ratner, M.A.: J. Chem. Phys. 115, 4292 (2001)

    Google Scholar 

  15. Yaliraki, S.N., Ratner, M.A.: J. Chem. Phys. 109, 5036 (1998)

    Google Scholar 

  16. Seminario, J.M., Cordova, L.E., Derosa, P.A.: Proc. IEEE 91 1958 (2003)

  17. Martin, R.M.: Electronic Structure Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  18. Alam, K., Lake, R.K.: Appl. Phys. Lett. 87, 073104 (2005)

    Google Scholar 

  19. Muscat, J., Wander, A., Harrison, N.M.: Chem. Phys. Lett. 342, 397 (2001)

    Google Scholar 

  20. Canning, A., Wang, L.W., Williamson, A., Zunger, A.: J. Comp. Phys. 160, 29 (2000)

    Google Scholar 

  21. Klimeck, G., Oyafuso, F., Boykin, T.B., Bowen, R.C., von Allmen, P.: CMES-Comput. Model. Eng. Sci. 3, 601 (2002)

    Google Scholar 

  22. Sankey, O.F., Niklewski, D.J.: Phys. Rev. B 40, 3979 (1989)

    Google Scholar 

  23. Lewis, J.P., Glaesemann, K.R., Voth, G.A., Fritsch, J., Demkov, A.A., Ortega, J., Sankey, O.F.: Phys. Rev. B 64, 195103 (2001)

    Google Scholar 

  24. Lewis, J.P., Starikov, T.E.C. III E.B., Wang, H., Sankey, O.F.: J. Phys. Chem. B 107, 2581 (2003)

    Google Scholar 

  25. Ceperley, D.M., Alder, G.J.: Phys. Rev. Lett. 45, 566 (1980)

    Google Scholar 

  26. Perdew, J.P., Zunger, A.: Phys. Rev. B 23, 5048 (1981)

    Google Scholar 

  27. Becke, A.D.: Phys. Rev. A 38, 3098 (1988)

    Google Scholar 

  28. Lee, C., Yang, W., Parr, R.G.: Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  29. Harris, J.: Phys. Rev. B 31, 1770 (1985)

    Google Scholar 

  30. Foulkes, W.M.C., Haydock, R.: Phys. Rev. B 39, 12520 (1989)

    Google Scholar 

  31. Demkov, A.A., Ortega, J., Sankey, O.F., Grumbach, M.P.: Phys. Rev. B 52, 1618 (1995)

    Google Scholar 

  32. Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J.H., Lewis, J.P., Fuentes-Cabrera, M.: Int. J. Quantum Chem. 69, 327 (1998)

    Google Scholar 

  33. Hamann, D.R.: Phys. Rev. B 40, 2980 (1989)

    Google Scholar 

  34. Mintmire, J.W., Robertson, D.H., White, C.T.: J. Phys. Chem. Solids 54, 1835 (1993)

    Google Scholar 

  35. Chen, Z., Appenzeller, J., Knoch, J., Lin, Y.-M., Avouris, P.: Nano Lett. 5, 1497 (2005)

  36. Adessi, C., Roche, S., Blase, X.: Phys. Rev. B 73, 125414 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas A. Bruque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, D., Bruque, N.A., Alam, K. et al. Electronic properties of carbon nanotubes calculated from density functional theory and the empirical π-bond model. J Comput Electron 6, 395–400 (2007). https://doi.org/10.1007/s10825-007-0147-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-007-0147-5

Keywords

Navigation