Skip to main content

Advertisement

Log in

Binding affinity prediction for binary drug–target interactions using semi-supervised transfer learning

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In the field of drug–target interactions prediction, the majority of approaches formulated the problem as a simple binary classification task. These methods used binary drug–target interaction datasets to train their models. The prediction of drug–target interactions is inherently a regression problem and these interactions would be identified according to the binding affinity between drugs and targets. This paper deals the binary drug–target interactions and tries to identify the binary interactions based on the binding strength of a drug and its target. To this end, we propose a semi-supervised transfer learning approach to predict the binding affinity in a continuous spectrum for binary interactions. Due to the lack of training data with continuous binding affinity in the target domain, the proposed method makes use of the information available in other domains (i.e. source domain), via the transfer learning approach. The general framework of our algorithm is based on an objective function, which considers the performance in both source and target domains as well as the unlabeled data in the target domain via a regularization term. To optimize this objective function, we make use of a gradient boosting machine which constructs the final model. To assess the performance of the proposed method, we have used some benchmark datasets with binary interactions for four classes of human proteins. Our algorithm identifies interactions in a more realistic situation. According to the experimental results, our regression model performs better than the state-of-the-art methods in some procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The target datasets used during the current study are available in the: http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/. The source dataset used in this study is available in: https://www.bindingdb.org/bind/index.jsp.

References

  1. Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharmacol Res 38(9):1686–1701. https://doi.org/10.1007/s12272-015-0640-5

    Article  CAS  Google Scholar 

  2. Ezzat A, Wu M, Li X-L, Kwoh C-K (2018) Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey. Brief Bioinform. https://doi.org/10.1093/bib/bby002

    Article  Google Scholar 

  3. Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB (2019) Comparison study of computational prediction tools for drug-target binding affinities. Front Chem 7:782–782. https://doi.org/10.3389/fchem.2019.00782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K (2021) Machine learning approaches and databases for prediction of drug–target interaction: a survey paper. Brief Bioinform 22(1):247–269. https://doi.org/10.1093/bib/bbz157

    Article  PubMed  Google Scholar 

  5. Chen R, Liu X, Jin S, Lin J, Liu J (2018) Machine learning for drug–target interaction prediction. Molecules. https://doi.org/10.3390/molecules23092208

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sachdev K, Gupta MK (2019) A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 93:103159. https://doi.org/10.1016/j.jbi.2019.103159

    Article  PubMed  Google Scholar 

  7. Öztürk H, Özgür A, Ozkirimli E (2018) DeepDTA: deep drug–target binding affinity prediction. Bioinformatics 34(17):i821–i829. https://doi.org/10.1093/bioinformatics/bty593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pahikkala T et al (2015) Toward more realistic drug–target interaction predictions. Brief Bioinform 16(2):325–337. https://doi.org/10.1093/bib/bbu010

    Article  CAS  PubMed  Google Scholar 

  9. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucl Acids Res 44(D1):D1045–D1053. https://doi.org/10.1093/nar/gkv1072

    Article  CAS  PubMed  Google Scholar 

  10. Dahl G, Akerud T (2013) Pharmacokinetics and the drug–target residence time concept. Drug Discov Today 18(15–16):697–707. https://doi.org/10.1016/j.drudis.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  11. He T, Heidemeyer M, Ban F, Cherkasov A, Ester M (2017) SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform 9(1):24–24. https://doi.org/10.1186/s13321-017-0209-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Abbasi K, Razzaghi P, Poso A, Amanlou M, Ghasemi JB, Masoudi-Nejad A (2020) DeepCDA: deep cross-domain compound–protein affinity prediction through LSTM and convolutional neural networks. Bioinformatics 36(17):4633–4642. https://doi.org/10.1093/bioinformatics/btaa544

    Article  CAS  PubMed  Google Scholar 

  13. Jiang M et al (2020) Drug–target affinity prediction using graph neural network and contact maps. RSC Adv 10(35):20701–20712. https://doi.org/10.1039/D0RA02297G

    Article  CAS  Google Scholar 

  14. Bleakley K, Yamanishi Y (2009) Supervised prediction of drug–target interactions using bipartite local models. Bioinformatics 25(18):2397–2403. https://doi.org/10.1093/bioinformatics/btp433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mei JP, Kwoh CK, Yang P, Li XL, Zheng J (2013) Drug-target interaction prediction by learning from local information and neighbors. Bioinformatics 29(2):238–245. https://doi.org/10.1093/bioinformatics/bts670

    Article  CAS  PubMed  Google Scholar 

  16. Nascimento AC, Prudencio RB, Costa IG (2016) A multiple kernel learning algorithm for drug-target interaction prediction. BMC Bioinform 17:46. https://doi.org/10.1186/s12859-016-0890-3

    Article  CAS  Google Scholar 

  17. van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27(21):3036–3043. https://doi.org/10.1093/bioinformatics/btr500

    Article  CAS  PubMed  Google Scholar 

  18. Ding Y, Tang J, Guo F (2020) Identification of drug–target interactions via dual laplacian regularized least squares with multiple kernel fusion. Knowl Based Syst 204:106254. https://doi.org/10.1016/j.knosys.2020.106254

    Article  Google Scholar 

  19. Gönen M (2012) Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 28(8):2304–2310. https://doi.org/10.1093/bioinformatics/bts360

    Article  CAS  PubMed  Google Scholar 

  20. Zheng X, Ding H, Mamitsuka H, Zhu S (2013) Collaborative matrix factorization with similarities for predicting drug-target interactions. In: Presented at the Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Chicago, IL, 2013. [Online]. Available: https://doi.org/10.1145/2487575.2487670

  21. Liu Y, Wu M, Miao C, Zhao P, Li X-L (2016) Neighborhood regularized logistic matrix factorization for drug–target interaction prediction. PLoS Comput Biol 12(2):e1004760–e1004760. https://doi.org/10.1371/journal.pcbi.1004760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ezzat A, Zhao P, Wu M, Li XL, Kwoh CK (2017) Drug–target interaction prediction with graph regularized matrix factorization. IEEE/ACM Trans Comput Biol Bioinform 14(3):646–656. https://doi.org/10.1109/tcbb.2016.2530062

    Article  CAS  PubMed  Google Scholar 

  23. Cui Z, Gao Y-L, Liu J-X, Dai L-Y, Yuan S-S (2019) L2,1-GRMF: an improved graph regularized matrix factorization method to predict drug-target interactions. BMC Bioinform 20(8):287. https://doi.org/10.1186/s12859-019-2768-7

    Article  Google Scholar 

  24. Rayhan F, Ahmed S, Farid DM, Dehzangi A, Shatabda S (2019) CFSBoost: cumulative feature subspace boosting for drug–target interaction prediction. J Theor Biol 464:1–8

    Article  CAS  Google Scholar 

  25. Rayhan F et al (2017) iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting. Sci Rep 7(1):17731. https://doi.org/10.1038/s41598-017-18025-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rayhan F, Ahmed S, Mousavian Z, Farid DM, Shatabda S (2020) FRnet-DTI: deep convolutional neural network for drug-target interaction prediction. Heliyon 6(3):e03444–e03444. https://doi.org/10.1016/j.heliyon.2020.e03444

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xia Z, Wu LY, Zhou X, Wong ST (2010) Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. BMC Syst Biol 4(Suppl 2):S6. https://doi.org/10.1186/1752-0509-4-s2-s6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Keum J, Nam H (2017) SELF-BLM: prediction of drug-target interactions via self-training SVM. PLoS ONE 12(2):e0171839. https://doi.org/10.1371/journal.pone.0171839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis MI et al (2011) Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol 29(1):1046–51. https://doi.org/10.1038/nbt.1990

    Article  CAS  PubMed  Google Scholar 

  30. Zhuang F et al (2021) A comprehensive survey on transfer learning. Proc IEEE 109(1):43–76. https://doi.org/10.1109/JPROC.2020.3004555

    Article  Google Scholar 

  31. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/tkde.2009.191

    Article  Google Scholar 

  32. Gao J, Fan W, Jiang J, Han J (2008) Knowledge transfer via multiple model local structure mapping. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Conference Proceedings, pp 283–291

  33. Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1):107–136. https://doi.org/10.1007/s10994-006-5833-1

    Article  Google Scholar 

  34. Mihalkova, L, Huynh T, Mooney RJ (2007) Mapping and revising Markov logic networks for transfer learning. In: Proceedings of the 22nd national conference on Artificial intelligence - Volume 1). Vancouver, BC, AAAI Press, pp 608–614

  35. Zou N, Baydogan M, Zhu Y, Wang W, Zhu J, Li J (2015) A transfer learning approach for predictive modeling of degenerate biological systems. Technometrics 57(3):362–373. https://doi.org/10.1080/00401706.2015.1044117

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mieth B et al (2019) Sing transfer learning from prior reference knowledge to improve the clustering of single-cell RNA-Seq data. Sci Rep. https://doi.org/10.1038/s41598-019-56911-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Turki T, Wei Z, Wang JTL (2017) Transfer learning approaches to improve drug sensitivity prediction in multiple myeloma patients. IEEE Access 5:7381–7393

    Article  Google Scholar 

  38. Mourragui S, Loog M, van de Wiel MA, Reinders MJT, Wessels LFA (2019) PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors. Bioinformatics 35(14):i510–i519. https://doi.org/10.1093/bioinformatics/btz372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. J Ann Stat 29:1189–1232. https://doi.org/10.1214/aos/1013203451

    Article  Google Scholar 

  40. Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-boosted trees for high precision, low variance ranking models. In: Presented at the Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, Beijing, China

  41. Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7:21–21. https://doi.org/10.3389/fnbot.2013.00021

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yamanishi Y, Araki M, Gutteridge A, Honda W, Kanehisa M (2008) Prediction of drug–target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 24(13):i232–i240. https://doi.org/10.1093/bioinformatics/btn162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3(1):9. https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  44. Kim S et al (2019) PubChem 2019 update: improved access to chemical data. Nucl Acids Res 47(D1):D1102–D1110. https://doi.org/10.1093/nar/gky1033

    Article  PubMed  Google Scholar 

  45. Vidal D, Thormann M, Pons M (2005) LINGO, an efficient holographic text based method to calculate biophysical properties and intermolecular similarities. J Chem Inf Model 45(2):386–393. https://doi.org/10.1021/ci0496797

    Article  CAS  PubMed  Google Scholar 

  46. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Rouge (in French), Lausanne

    Google Scholar 

  47. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197. https://doi.org/10.1016/0022-2836(81)90087-5

    Article  CAS  PubMed  Google Scholar 

  48. Wishart DS et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl Acids Res 46(D1):D1074–D1082. https://doi.org/10.1093/nar/gkx1037

    Article  CAS  PubMed  Google Scholar 

  49. Hecker N et al (2012) SuperTarget goes quantitative: update on drug-target interactions. Nucl Acids Res 40(Database issue):1113–1117. https://doi.org/10.1093/nar/gkr912

    Article  CAS  Google Scholar 

  50. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2016) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucl Acids Res 45(D1):D353–D361. https://doi.org/10.1093/nar/gkw1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsabeh Tanoori.

Ethics declarations

Conflict of interest

The authors declare that they have not any financial and personal relationships with other people or organizations that could inappropriately influence this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanoori, B., Zolghadri Jahromi, M. & Mansoori, E.G. Binding affinity prediction for binary drug–target interactions using semi-supervised transfer learning. J Comput Aided Mol Des 35, 883–900 (2021). https://doi.org/10.1007/s10822-021-00404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-021-00404-7

Keywords

Navigation