Skip to main content
Log in

DR2DI: a powerful computational tool for predicting novel drug-disease associations

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Finding the new related candidate diseases for known drugs provides an effective method for fast-speed and low-risk drug development. However, experimental identification of drug-disease associations is expensive and time-consuming. This motivates the need for developing in silico computational methods that can infer true drug-disease pairs with high confidence. In this study, we presented a novel and powerful computational tool, DR2DI, for accurately uncovering the potential associations between drugs and diseases using high-dimensional and heterogeneous omics data as information sources. Based on a unified and extended similarity kernel framework, DR2DI inferred the unknown relationships between drugs and diseases using Regularized Kernel Classifier. Importantly, DR2DI employed a semi-supervised and global learning algorithm which can be applied to uncover the diseases (drugs) associated with known and novel drugs (diseases). In silico global validation experiments showed that DR2DI significantly outperforms recent two approaches for predicting drug-disease associations. Detailed case studies further demonstrated that the therapeutic indications and side effects of drugs predicted by DR2DI could be validated by existing database records and literature, suggesting that DR2DI can be served as a useful bioinformatic tool for identifying the potential drug-disease associations and guiding drug repositioning. Our software and comparison codes are freely available at https://github.com/huayu1111/DR2DI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paul SM et al (2010) How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 9:203–214

    Article  CAS  Google Scholar 

  2. Hodos RA et al (2016) In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med 8:186

    Article  Google Scholar 

  3. March-Vila E et al (2017) On the integration of in silico drug design methods for drug repurposing. Front Pharmacol 8:298

    Article  Google Scholar 

  4. Vanhaelen Q et al (2016) Design of efficient computational workflows for in silico drug repurposing. Drug Discovery Today 22:210–222

    Article  Google Scholar 

  5. Wang ZY, Zhang HY (2013) Rational drug repositioning by medical genetics. Nat Biotechnol 31:1080

    Article  CAS  Google Scholar 

  6. Hurle MR et al (2013) Computational drug repositioning: from data to therapeutics. Clin Pharmacol Ther 93:335–341

    Article  CAS  Google Scholar 

  7. von Eichborn J et al (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res 39:D1060–D1066

    Article  Google Scholar 

  8. Wishart DS et al (2008) DrugBank: a knowledge base for drugs, drug actions and drug targets. Nucleic Acids Res 36:901–906

    Article  Google Scholar 

  9. Davis AP et al (2009) Comparative Toxicogenomics Database: a knowledgebase and discovery tool for chemical-gene-disease networks. Nucleic Acids Res 37:D786

    Article  CAS  Google Scholar 

  10. Chen X, Ji ZL, Chen YZ (2002) TTD: Therapeutic target Database. Nucleic Acids Res 30:412–415

    Article  CAS  Google Scholar 

  11. Iwata H et al (2015) Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data. J Chem Inf Model 55:446–459

    Article  CAS  Google Scholar 

  12. Dudley JT, Deshpande T, Butte AJ (2011) Exploiting drug-disease relationships for computational drug repositioning. Briefings Bioinf 12:303–311

    Article  CAS  Google Scholar 

  13. Gottlieb A et al (2011) PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol Syst Biol 7:496

    Article  Google Scholar 

  14. Yang L, Agarwal P (2011) Systematic drug repositioning based on clinical side-effects. PLoS ONE 6:e28025

    Article  CAS  Google Scholar 

  15. Wang Y et al (2013) Drug repositioning by Kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS ONE 8:e78518

    Article  CAS  Google Scholar 

  16. Napolitano F et al (2013) Drug repositioning: a machine-learning approach through data integration. J Cheminf 5:30

    Article  CAS  Google Scholar 

  17. Liang X et al (2017) LRSSL: predict and interpret drug-disease associations based on data integration using sparse subspace learning. Bioinformatics 33:1187–1196

    Article  Google Scholar 

  18. Chiang AP, Butte AJ (2009) Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin Pharmacol Ther 86:507–510

    Article  CAS  Google Scholar 

  19. Li J, Lu Z (2013) Pathway-based drug repositioning using causal inference. BMC Bioinf 14:1–10

    Article  Google Scholar 

  20. Pratanwanich N, Lió P (2014) Pathway-based Bayesian inference of drug-disease interactions. Mol Biosyst 10:1538

    Article  CAS  Google Scholar 

  21. Vogt I, Prinz J, Campillos M (2014) Molecularly and clinically related drugs and diseases are enriched in phenotypically similar drug-disease pairs. Genome Med 6:1–17

    Article  Google Scholar 

  22. Yang J et al (2014) Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization. J Chem Inf Model 54:2562

    Article  CAS  Google Scholar 

  23. Ye H, Liu Q, Wei J (2014) Construction of drug network based on side effects and its application for drug repositioning. PLoS ONE 9:e87864

    Article  Google Scholar 

  24. Hu G, Agarwal P (2009) Human disease-drug network based on genomic expression profiles. PLoS One 4:e6536

    Article  Google Scholar 

  25. Iorio F et al (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proc Natl Acad Sci USA 107:14621–14626

    Article  CAS  Google Scholar 

  26. Lamb J et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  Google Scholar 

  27. Shigemizu D et al (2012) Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer. PLoS Comput Biol 8:e1002347

    Article  CAS  Google Scholar 

  28. Sirota M et al (2011) Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med 3:96ra77

    Article  CAS  Google Scholar 

  29. Cheng F et al (2013) Prediction of human genes and diseases targeted by xenobiotics using predictive toxicogenomic-derived models (PTDMs). Mol Biosyst 9:1316–1325

    Article  CAS  Google Scholar 

  30. Cheng F et al (2012) Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 8:e1002503

    Article  CAS  Google Scholar 

  31. Huang YF, Yeh HY, Soo VW (2013) Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med Genomics 6:1–14

    Article  Google Scholar 

  32. Wang W et al (2014) Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 30:2923

    Article  CAS  Google Scholar 

  33. Wu Z, Wang Y, Chen L (2013) Network-based drug repositioning. Mol Biosyst 9:1268–1281

    Article  CAS  Google Scholar 

  34. Colby GT (2003) The comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. Environ Health Perspect 111:793

    Article  Google Scholar 

  35. Davis AP et al (2017) The comparative Toxicogenomics Database: update 2017. Nucleic Acids Res 45:D972–D978

    Article  CAS  Google Scholar 

  36. Harden C, Maclusky NJ (2004) Aromatase inhibition, testosterone, and seizures. Epilepsy Behav 5:260–263

    Article  Google Scholar 

  37. Reddy DS (2004) Testosterone modulation of seizure susceptibility is mediated by neurosteroids 3alpha-androstanediol and 17beta-estradiol. Neuroscience 129:195

    Article  CAS  Google Scholar 

  38. Goyal R, Chandrasekaran R, Nanda MR (2007) Propranolol-responsive akathisia following acute encephalitis. Gen Hosp Psychiatry 29:273–274

    Article  Google Scholar 

  39. Restivo A et al (2005) Antiproliferative effect of mimosine in ovarian cancer. J Clin Oncol 23:16_suppl

    Article  Google Scholar 

  40. Kawakita T et al (1999) Benzoic acid compounds and use thereof as medicaments. US Patent No. 5,864,039

  41. Sharma P, Pandey R, Deshpande S (2016) Indomethacin exacerbates oleic acid-induced acute respiratory distress syndrome in adult rats. Indian J Physiol Pharmacol 60:82–89

    CAS  Google Scholar 

  42. Zhang P et al (2013) Exploring the relationship between drug side-effects and therapeutic indications. In: AMIA annual symposium proceedings, vol. 2013, pp 1568–1577

  43. Laarhoven TV, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting drug–target interaction. Bioinformatics 27:1–8

    Article  Google Scholar 

  44. Yu H, Chen X, Lu L (2017) Large-scale prediction of microRNA-disease associations by combinatorial prioritization algorithm. Sci Rep 7:43792

    Article  CAS  Google Scholar 

  45. Raymond R, Kashima H (2010) Fast and scalable algorithms for semi-supervised link prediction on static and dynamic graphs. In: European conference on machine learning and knowledge discovery in databases, vol 1. Springer, Heidelberg, pp 131–147

    Chapter  Google Scholar 

  46. Yu H et al (2012) A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. Plos ONE 7:e37608

    Article  CAS  Google Scholar 

  47. Jeanette P et al (2016) A novel drug-mouse phenotypic similarity method detects molecular determinants of drug effects. PLoS Comput Biol 12:e1005111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LL and HY conceived the original research plans, analyzed the data and wrote the article; HY and LL supervised the experiments and revised the paper.

Corresponding authors

Correspondence to Lu Lu or Hua Yu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Yu, H. DR2DI: a powerful computational tool for predicting novel drug-disease associations. J Comput Aided Mol Des 32, 633–642 (2018). https://doi.org/10.1007/s10822-018-0117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-018-0117-y

Keywords

Navigation