Skip to main content
Log in

Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3–9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2–35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. User manual: http://sbl.inria.fr/doc/Space_filling_model_shelling_diagram_surface_encoding-user-manual.html

  2. User manual: http://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html

References

  1. Smith RD, Dunbar JJB, Ung PM, Esposito EX, Yang CY, Wang S, Carlson HA (2011) J Chem Inf Model 51:2115

    Article  CAS  Google Scholar 

  2. Damm-Ganamet KL, Smith RD, Dunbar JB Jr, Stuckey JA, Carlson HA (2013) J Chem Inf Model 53(8):1853

    Article  CAS  Google Scholar 

  3. Grudinin S, Popov P, Neveu E, Cheremovskiy G (2015) J Chem Inf Model. doi:10.1021/acs.jcim.5b00339

    Google Scholar 

  4. Crawford TD, Ndubaku CO, Chen H, Boggs JW, Bravo BJ, Delatorre K, Giannetti AM, Gould SE, Harris SF, Magnuson SR, McNamara E, Murray LJ, Nonomiya J, Sambrone A, Schmidt S, Smyczek T, Stanley M, Vitorino P, Wang L, West K, Wu P, Ye W (2014) J Med Chem 57(8):3484. doi:10.1021/jm500155b

    Article  CAS  Google Scholar 

  5. Homeyer N, Gohlke H (2013) J Comput Chem 34(11):965

    Article  CAS  Google Scholar 

  6. Wang L, Wu Y, Deng Y, Kim B, Pierce L, Krilov G, Lupyan D, Robinson S, Dahlgren MK, Greenwood J et al (2015) J Am Chem Soc 137(7):2695

    Article  CAS  Google Scholar 

  7. Wang L, Berne B, Friesner RA (2012) PNAS 109(6):1937

    Article  CAS  Google Scholar 

  8. Lensink MF, Velankar S, Kryshtafovych A, Huang SY, Schneidman-Duhovny D, Sali A, Segura J, Fernandez-Fuentes N, Viswanath S, Elber R, Grudinin S, Popov P, Neveu E, Lee H, Baek M, Park S, Heo L, Rie G, Lee C Seok, Qin S, Zhou HX, Ritchie DW, Maigret B, Devignes MD, Ghoorah A, Torchala M, Chaleil RAG, Bates PA, Ben-Zeev E, Eisenstein M, Negi SS, Weng Z, Vreven T, Pierce BG, Borrman TM, Yu J, Ochsenbein F, Guerois R, Vangone A, Rodrigues JPGLM, van Zundert G, Nellen M, Xue L, Karaca E, Melquiond ASJ, Visscher K, Kastritis PL, Bonvin AMJJ, Xu X, Qiu L, Yan C, Li J, Ma Z, Cheng J, Zou X, Shen Y, Peterson LX, Kim HR, Roy A, Han X, Esquivel-Rodriguez J, Kihara D, Yu X, Bruce NJ, Fuller JC, Wade RC, Anishchenko I, Kundrotas PJ, Vakser IA, Imai K, Yamada K, Oda T, Nakamura T, Tomii K, Pallara C, Romero-Durana M, Jiménez-García B, Moal IH, JFérnandez-Recio IH, Joung JY, Kim JY, Joo K, Lee J, Kozakov D, Vajda S, Mottarella S, Hall DR, Beglov D, Mamonov A, Xia B, Bohnuud T, Del Carpio CA, Ichiishi E, Marze N, Kuroda D, Roy Burman SS, Gray JJ, Chermak E, Cavallo L, Oliva R, Tovchigrechko A, Wodak SJ (2016) Proteins. doi:10.1002/prot.25007

  9. Popov P, Grudinin S (2015) J Chem Inf Model 55(10):2242. doi:10.1021/acs.jcim.5b00372

    Article  CAS  Google Scholar 

  10. Marillet S, Boudinot P, Cazals F (2015) Proteins: Struct Funct Bioinform 1(84): 9 (2015). doi:10.1002/prot.24946. https://hal.inria.fr/hal-01159641

  11. Kastritis P, Moal I, Hwang H, Weng Z, Bates P, Bonvin A, Janin J (2011) Protein Sci 20:482

    Article  CAS  Google Scholar 

  12. Huang SY, Zou X (2008) Proteins: Struct Funct Bioinform 72(2):557http://onlinelibrary.wiley.com/doi/10.1002/prot.21949/full

  13. Chuang GY, Kozakov D, Brenke R, Comeau SR, Vajda S (2008) Biophys J 95(9):4217

    Article  CAS  Google Scholar 

  14. Maiorov VN, Grippen GM (1992) J Mol Biol 227(3):876

    Article  CAS  Google Scholar 

  15. Qiu J, Elber R (2005) Proteins: Struct Funct Bioinform 61(1):44

    Article  CAS  Google Scholar 

  16. Rajgaria R, McAllister S, Floudas C (2006) Proteins: Struct Funct Bioinform 65(3):726

    Article  CAS  Google Scholar 

  17. Tobi D, Bahar I (2006) Proteins: Struct Funct Bioinform 62(4):970

    Article  CAS  Google Scholar 

  18. Ravikant D, Elber R (2010) Proteins: Struct Funct Bioinform 78(2):400

    Article  CAS  Google Scholar 

  19. Chae MH, Krull F, Lorenzen S, Knapp EW (2010) Proteins: Struct Funct Bioinform 4(78):1026

    Article  Google Scholar 

  20. Neudert G, Klebe G (2011) Bioinformatics 27(7):1021

    Article  CAS  Google Scholar 

  21. Conte L Lo, Chothia C, Janin J (1999) JMB 285(5):2177

    Article  Google Scholar 

  22. Janin J, Bahadur RP, Chakrabarti P (2008) Q Rev Biophysics 41(2):133

    Article  CAS  Google Scholar 

  23. Cazals F, Proust F, Bahadur R, Janin J (2006) Protein Sci 15(9):2082. doi:10.1110/ps.062245906

    Article  CAS  Google Scholar 

  24. Loriot S, Cazals F (2010) Bioinformatics 26(7):964. doi:10.1093/bioinformatics/btq052. http://hal.inria.fr/hal-00849822

  25. Gerstein M, Richards F (2001) Protein geometry: volumes, areas, and distances. In: Rossmann MG, Arnold E (eds) The international tables for crystallography, vol F, Chap 22. Springer, Berlin, p 531–539

    Google Scholar 

  26. Cazals F, Kanhere H, Loriot S (2011) ACM Trans Math Softw 38(1):1. doi:10.1145/2049662.2049665. http://hal.inria.fr/hal-00849809

  27. Meng G, Arkus N, Brenner M, Manoharan V (2010) Science 327(5965):560

    Article  CAS  Google Scholar 

  28. Dunitz J (1995) Chem Biol 2(11):709

    Article  CAS  Google Scholar 

  29. Kastritis P, Rodrigues J, Folkers G, Boelens R, Bonvin A (2014) JMB 426:2632

    Article  CAS  Google Scholar 

  30. Eisenberg D, Wesson M, Yamashita M (1989) Chem Scr A 29:217

    Google Scholar 

  31. Bouvier B, Grunberg R, Nilgès M, Cazals F (2009) Proteins: Struct Funct Bioinform 76(3):677. doi:10.1002/prot.22381. http://hal.inria.fr/hal-00796032

  32. Wang R, Fang X, Lu Y, Yang CY, Wang S (2005) J Med Chem 48(12):4111. doi:10.1021/jm048957q. http://www.ncbi.nlm.nih.gov/pubmed/15943484

  33. Wang R, Fang X, Lu Y, Wang S (2004) J Med Chem 47(12):2977. doi:10.1021/jm030580l. http://www.ncbi.nlm.nih.gov/pubmed/15163179

  34. Barber D (2012) Bayesian reasoning and machine learning. Cambridge University Press, Cambridge. http://assets.cambridge.org/97805215/18147/cover/9780521518147.jpg

  35. Sonnenburg S, Rätsch G, Henschel S, Widmer C, Behr J, Zien A, Bona Fd, Binder A, Gehl C, Franc V (2010) J Mach Learn Res 11:1799

    Google Scholar 

  36. Kadukova M, Grudinin S (2016) J Chem Inf Model 56(8):1410. doi:10.1021/acs.jcim.5b00512

    Article  CAS  Google Scholar 

  37. Trott O, Olson AJ (2010) J Comput Chem 31(2):455

    CAS  Google Scholar 

  38. Seeliger D, de Groot BL (2010) J Comput Aided Mol Des 24(5):417. doi:10.1007/s10822-010-9352-6

    Article  CAS  Google Scholar 

  39. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) J Cheminform 3:33

    Article  Google Scholar 

  40. Heifets A, Lilien R (2010) J Mol Graph Model 29(1):93. doi:10.1016/j.jmgm.2010.05.005

    Article  CAS  Google Scholar 

  41. The PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC

  42. Györfi L, Krzyzak A (2002) A distribution-free theory of nonparametric regression. Springer, Berlin

Download references

Acknowledgments

The authors thank Dr. Petr Popov from MIPT Moscow for the initial analysis of the HSP90 targets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Grudinin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 89 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grudinin, S., Kadukova, M., Eisenbarth, A. et al. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation. J Comput Aided Mol Des 30, 791–804 (2016). https://doi.org/10.1007/s10822-016-9976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-016-9976-2

Keywords

Navigation