Skip to main content
Log in

Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The application of graphene and related nanomaterials like boron nitride (BN) nanosheets, BN-graphene hybrid nanomaterials, and graphene oxide (GO) for adsorption of anticancer chemotherapeutic camptothecin (CPT) along with the effect on electronic properties prior to functionalization and after functionalization has been reported using density functional theory (DFT) calculations. The inclusion of dispersion correction to DFT is instrumental in accounting for van der Waals π–π stacking between CPT and the nanomaterial. The adsorption of CPT exhibits significant strain within the nanosheets and noncovalent adsorption of CPT is thermodynamically favoured onto the nanosheets. In case of GO, surface incorporation of functional groups result in significant crumpling along the basal plane and the interaction is basically mediated by H-bonding rather than ππ stacking. Docking studies predict the plausible binding of CPT, CPT functionalized graphene and GO with topoisomerase I (top 1) signifying that CPT interacts through π stacking with AT and GC base pairs of DNA and in presence of nano support, DNA bases preferentially gets bound to the basal plane of graphene and GO rather than the edges. At a theoretical level of understanding, our studies point out the noncovalent interaction of CPT with graphene based nanomaterials and GO for loading and delivery of anticancer chemotherapeutic along with active binding to Top1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Filrsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  2. Gunlycke D, Lawler HM, White CT (2007) Room-temperature ballistic transport in narrow graphene strips. Phys Rev B 75: 085418-1–085418-5

    Google Scholar 

  3. Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379

    Article  CAS  Google Scholar 

  4. Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  6. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  7. Ren T, Li L, Cai X, Dong H, Liu S, Li Y (2012) Engineered polyethylenimine/graphene oxide nanocomposite for nuclear localized gene delivery. Polym Chem 3:2561–2569

    Article  CAS  Google Scholar 

  8. Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257

    Article  CAS  Google Scholar 

  9. Peng C, Hu W, Zhou Y, Fan C, Huang Q (2010) Intracellular imaging with a graphene-based fluorescent probe. Small 6:1686–1692

    Article  CAS  Google Scholar 

  10. Yang K, Zhang S, Zhang G, Sun X, Lee S-T, Liu Z (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  CAS  Google Scholar 

  11. Mohanty N, Berry V (2008) Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett 8:4469–4476

    Article  CAS  Google Scholar 

  12. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  Google Scholar 

  13. Zhao J-X, Yu Y-Y, Bai Y, Lu B, Wang B-X (2012) Chemical functionalization of BN graphene with the metal-arene group: a theoretical study. J Mater Chem 22:9343–9350

    Article  CAS  Google Scholar 

  14. Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993

    Article  CAS  Google Scholar 

  15. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081–5084

    Article  CAS  Google Scholar 

  16. Azevedo S, Kaschny JR, de Castilho CMC, de Brito Mota FA (2007) A theoretical investigation of defects in a boron nitride monolayer. Nanotechnol 18:495707

    Article  Google Scholar 

  17. Si MS, Xue DS (2007) Magnetic properties of vacancies in a graphitic boron nitride sheet by first–principles pseudopotential calculations. Phys Rev B: Condens Matter Mater Phys 75:193409

    Article  Google Scholar 

  18. Zhang Z, Guo W (2011) Controlling the functionalizations of hexagonal boron nitride structures by carrier doping. J Phys Chem Lett 2:2168–2173

    Article  CAS  Google Scholar 

  19. Wei X, Wang MS, Bando Y, Golberg D (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5:2916–2922

    Article  CAS  Google Scholar 

  20. Li J, Zhou G, Chen Y, Gu B-L, Duan W (2009) Potential room temperature ferromagnetic O/BN and F/BN bilayers. J Am Chem Soc 131:1796–1801

    Article  CAS  Google Scholar 

  21. Si MS, Li JY, Shi HG, Niu XN, Xue DS (2009) Divacancies in graphitic boron nitride sheets. Europhys Lett 86(46002):1–6

    Google Scholar 

  22. Wang Y, Ding Y, Ni J (2010) Fluorination-induced half-metallicity in zigzag boron nitride nanoribbons: first-principles calculations. Phys Rev B: Condens Matter Mater Phys 81: 193407 1–4

    Google Scholar 

  23. Zhou J, Wang Q, Sun Y, Jena Q (2010) Electronic and magnetic properties of a BN sheet decorated with hydrogen and fluorine. Phys Rev B: Condens Matter Mater Phys 81(085442):1–7

    Google Scholar 

  24. Tang Q, Zhou Z, Chen Z (2011) Molecular charge transfer: a simple and effective route to engineer the band structures of BN nanosheets and nanoribbons. J Phys Chem C 115:18531–18537

    Article  CAS  Google Scholar 

  25. Kotakoski J, Krasheninnikov AV, Ma Y, Foster AS, Nordlund K, Nieminen RM (2005) B and N ion implantation into carbon nanotubes: insight from atomistic simulations. Phys Rev B 71(205408):1–6

    Google Scholar 

  26. Martins TB, Miwa RH, da Silva AJR, Fazzio A (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(196803):1–4

    Google Scholar 

  27. Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L, Liu F, Ajayan PM (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430–435

    Article  CAS  Google Scholar 

  28. Manna AK, Pati SK (2011) Tunable electronic and magnetic properties in BxNyCz nanohybrids: effect of domain segregation. J Phys Chem C 115:10842–10850

    Article  CAS  Google Scholar 

  29. Mukhopadhyay S, Scheicher RH, Pandey R, Karna SP (2011) Sensitivity of boron nitride nanotubes toward biomolecules of different polarities. J Phys Chem Lett 2:2442–2447

    Article  CAS  Google Scholar 

  30. Mukhopadhyay S, Gowtham S, Scheicher RH, Pandey R, Karna SP (2010) Theoretical study of physisorption of nucleobases on boron nitride nanotubes: a new class of hybrid nano-biomaterials. Nanotechnol 21(165703):1–6

    Google Scholar 

  31. Gowtham S, Scheicher RH, Pandey R, Karna SP, Ahuja R (2008) First-principles study of physisorption of nucleic acid bases on small-diameter carbon nanotubes. Nanotechnol 19(125701):1–6

    Google Scholar 

  32. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B 76:033401–033404

    Article  Google Scholar 

  33. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  CAS  Google Scholar 

  34. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    Article  CAS  Google Scholar 

  35. Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D (2011) Biocompatibility of graphene oxide. Nanoscale Res Lett 6:1–8

    Google Scholar 

  36. Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W, Fan C, Huang Q (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49:986–995

    Article  CAS  Google Scholar 

  37. di Nunzio MR, Cohen B, Douhal A (2011) Structural photodynamics of camptothecin, an anticancer drug in aqueous solutions. J Phys Chem A 115:5094–5104

    Article  Google Scholar 

  38. Hsiang Y-H, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces proteinlinked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260:14873–14878

    CAS  Google Scholar 

  39. Wall ME, Wani MC, Natschke SM, Nicholas AW (1986) Plant antitumor agents. J Med Chem 29:1553–1555

    Article  CAS  Google Scholar 

  40. Jena NR, Mishra PC (2007) A theoretical study of some new analogues of the anti-cancer drug camptothecin. J Mol Model 13:267–274

    Article  CAS  Google Scholar 

  41. Gallo RC, Whang-Peng J, Adamson RH (1971) Studies on the antitumor activity, mechanism of action, and cell cycle effects of camptothecin. J Natl Cancer Inst 46:789–795

    CAS  Google Scholar 

  42. Ha SW, Kim YJ, Kim W, Lee CS (2009) Antitumor effects of camptothecin combined with conventional anticancer drugs on the cervical and uterine squamous cell carcinoma cell line SiHa. Korean J Physiol Pharmacol 13:115–121

    Article  CAS  Google Scholar 

  43. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508

    Article  CAS  Google Scholar 

  44. Mulliken RS (1934) Electronic structures of molecules. XI. Electro affinity, molecular orbitals and dipole moments. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  45. Parr RG, von Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Iyengar JC, Tomasi SS, Cossi J, Rega M, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts, Stratmann RE, Yazyev O, Austin AJ, Cammi RC, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09, Revision A.1; Gaussian, Inc.: Wallingford CT, 2009

  47. Liu L, Zeng Z, Zeng G, Chen M, Zhang Y, Zhang J, Fang X, Jiang M, Lu L (2012) Study on binding modes between cellobiose and b-glucosidases from glycoside hydrolase family 1. Bioorg Med Chem Lett 22:837–843

    Article  CAS  Google Scholar 

  48. http://molegro.com/mvd-product.php

  49. Bursulaya BD, Totrov M, Abagyan R, Brooks CL (2003) Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17:755–763

    Article  CAS  Google Scholar 

  50. Storn R, Price K (1995) Differential evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces; technical report. International Computer Science Institute, Berkley, CA

    Google Scholar 

  51. Yang J-M, Chen C-C (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55:288–304

    Article  CAS  Google Scholar 

  52. Zhao Y, Wu X, Yang J, Zeng XC (2011) Ab initio theoretical study of non-covalent adsorption of aromatic molecules on boron nitride nanotubes. Phys Chem Chem Phys 13:11766–11772

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), New Delhi, India for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4,266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saikia, N., Deka, R.C. Ab initio study on the noncovalent adsorption of camptothecin anticancer drug onto graphene, defect modified graphene and graphene oxide. J Comput Aided Mol Des 27, 807–821 (2013). https://doi.org/10.1007/s10822-013-9681-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9681-3

Keywords

Navigation