Skip to main content
Log in

Automated molecule editing in molecular design

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The ability to modify chemical structures in an automated and controlled manner is useful in molecular design. This Perspective introduces the MUDO molecule editor and shows how automated molecule editing can be used to standardize structures, enumerate tautomeric and ionization states, identify matched molecular pairs. Unlike its predecessor Leatherface, MUDO can also process 3D structures and this capability can be used to link non-covalently docked ligands to proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kenny PW, Sadowski J (2005) Structure modification in chemical databases. Methods and principles in medicinal chemistry. In: Oprea T (ed) Chemoinformatics in drug discovery. 23:271–285

  2. Barnard JM, Kenny PW, Wallace PN (2012) Representing chemical structures in databases for drug design. RSC drug discovery series 13 (drug design strategies) 164–191

  3. Southan C, Várkonyi P, Muresan S (2007) Complementarity between public and commercial databases: new opportunities in medicinal chemistry informatics. Curr Top Med Chem 7:1502–1508

    Article  CAS  Google Scholar 

  4. Lyne PD, Kenny PW, Cosgrove DA, Deng C, Zabludoff S, Wendoloski JJ, Ashwell S (2004) Identification of compounds with nanomolar binding affinity for checkpoint kinase-1 using knowledge-based virtual screening. J Med Chem 47:1962–1968

    Article  CAS  Google Scholar 

  5. Krumrine JR, Maynard AT, Lerman CL (2005) Statistical tools for virtual screening. J Med Chem 48:7477–7481

    Article  CAS  Google Scholar 

  6. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Sci 45:177–182

    Article  CAS  Google Scholar 

  7. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening–an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  8. SMIRKS Theory Manual, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 16 Dec 2012

  9. Daylight toolkit, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/products/toolkit.html. Accessed 16 Dec 2012

  10. SMARTS Theory Manual, Daylight Chemical Information Systems, Inc., Laguna Niguel, CA 92677. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 20 May 2013

  11. Bartlett PA, Shea GT, Telfer SJ, Waterman S (1989) CAVEAT: a program to facilitate the structure-derived design of biologically active molecules. Special publication-Royal Society of Chemistry. Mol Recognit Chem Biochem. Probl 78, 182–196

    Google Scholar 

  12. Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-Hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38:2894–2896

    Article  CAS  Google Scholar 

  13. Unity. Tripos International, St. Louis, MO 63144-2319. http://www.tripos.com/index.php?family=modules,SimplePage,,,&page=UNITY. Accessed 25 May 2013

  14. Van Drie JH, Weininger D, Martin YC (1989) ALADDIN: an integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures. J Comput Aided Mol Des 3:225–251

    Article  Google Scholar 

  15. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comp Sci 28:31–36

    Article  CAS  Google Scholar 

  16. Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comp Sci 29:97–101

    Article  CAS  Google Scholar 

  17. OEChem Toolkit Manual, OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/docs/toolkits/current/html/OEChem_TK-c++/index.html. Accessed 26 Oct 2012

  18. Morley AD, Kenny PW, Burton B, Heald RA, MacFaul PA, Mullett J, Page K, Porres SS, Ribeiro LR, Smith P, Ward S, Wilkinson TJ (2009) 5-Aminopyrimidin-2-ylnitriles as cathepsin K inhibitors. Bioorg Med Chem Lett 19:1568–1661

    Article  Google Scholar 

  19. Elguero J, Marzin C, Katritzky AR, Lind P (1975) The tautomerism of heterocycles. Adv Heterocycl Chem Suppl 1:1–656

    Google Scholar 

  20. Button RG, Cairns JP, Taylor PJ (1985) Tautomeric ratio in 4-methylthiazol-2-ylguanidine, a model guanidinoheterocycle. J Chem Soc Perkin Trans 2:1555–1558

    Google Scholar 

  21. Albert A, Taylor PJ (1989) The tautomerism of 1,2,3-triazole in aqueous solution. J Chem Soc Perkin Trans 2:1903–1905

    Google Scholar 

  22. Martin YC (2009) Let’s not forget tautomers. J Comput Aid Mol Des 23:693–704

    Article  CAS  Google Scholar 

  23. Sayle RA (2010) So you think you understand tautomerism? J Comput Aid Mol Des 24:485–496

    Article  CAS  Google Scholar 

  24. Oellien F, Cramer J, Beyer C, Ihlenfeldt W-D, Selzer PM (2006) The impact of tautomer forms on pharmacophore-based virtual screening. J Chem Inf Model 46:2342–2354

    Article  CAS  Google Scholar 

  25. Claramunt RM, Garcia MA, Lopez C, Trofimenko S, Yap GPA, Alkorta I, Elguero J (2005) The tautomerism of 1H-pyrazole-3(5)-(N-tert-butyl)carboxamide in the solid state and in solution. Magn Reson Chem 43:89–91

    Article  CAS  Google Scholar 

  26. Khalili F, Henni A, East ALL (2009) pKa values of some piperazines at (298, 303, 313, and 323) K. J Chem Eng Data 54:2914–2917

    Article  CAS  Google Scholar 

  27. Hammett LP (1937) Effect of structure upon the reactions of organic compounds Benzene derivatives. J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  28. Free SM, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399

    Article  CAS  Google Scholar 

  29. Birch AM, Kenny PW, Simpson I, Whittamore PRO (2009) Matched molecular pair analysis of activity and properties of glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 19:850–853

    Article  CAS  Google Scholar 

  30. Zwanzig RW (1954) High-temperature equation of state by a perturbation method I. Nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  31. Shirts MR, Mobley DL, Chodera JD (2007) Alchemical free energy calculations: ready for prime time? Ann Rep Comp Chem 3:41–59

    Article  CAS  Google Scholar 

  32. Maggiora GM (2006) On outliers and activity cliffs-why QSAR often disappoints. J Chem Inf Model 46:1535

    Article  CAS  Google Scholar 

  33. Wassermann AM, Wawer M, Bajorath J (2010) Activity landscape representations for structure—activity relationship analysis. J Med Chem 53:8209–8223

    Article  CAS  Google Scholar 

  34. Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942

    Article  CAS  Google Scholar 

  35. Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J Med Chem 39:3049–3059

    Article  CAS  Google Scholar 

  36. Blomberg N, Cosgrove DA, Kenny PW, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aid Mol Des 23:513–525

    Article  CAS  Google Scholar 

  37. Leach AG, Jones HD, Cosgrove DA, Kenny PW, Ruston L, MacFaul P, Wood JM, Colclough N, Law B (2006) Matched molecular pairs as a guide in the optimization of pharmaceutical properties; a study of aqueous solubility, plasma protein binding and oral exposure. J Med Chem 49:6672–6682

    Article  CAS  Google Scholar 

  38. Griffen E, Leach AG, Robb GR, Warner DJ (2011) Matched molecular pairs as a medicinal chemistry tool. J Med Chem 54:7739–7750

    Article  CAS  Google Scholar 

  39. Wassermann AM, Dimova D, Iyer P, Bajorath J (2012) Advances in computational medicinal chemistry: matched molecular pair analysis. Drug Dev Res 73:518–527

    Article  CAS  Google Scholar 

  40. Dossetter AG, Griffen EJ, Leach AG (2013) Matched molecular pair analysis in drug discovery. Drug Discov Today 18:724–731

    Google Scholar 

  41. Herr RJ (2002) 5-Substituted 1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393

    Article  CAS  Google Scholar 

  42. LOGKOW, A databank of evaluated octanol-water partition coefficients: http://logkow.cisti.nrc.ca/logkow/index.jsp. Accessed 26 Oct 2012

  43. Thornber CW (1979) Isosterism and molecular modification in drug design. Chem Soc Rev 8:563–580

    Article  CAS  Google Scholar 

  44. Patani GA, LaVoie EJ (1996) Bioisosterism: a rational approach in drug design. Chem Rev 96:3147–3176

    Article  CAS  Google Scholar 

  45. Sheridan RP (2002) The most common chemical replacements in drug-like compounds. J Chem Inf Comp Sci 42:103–108

    Article  CAS  Google Scholar 

  46. Meanwell Nicholas A (2011) Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem 54:2529–2591

    Article  CAS  Google Scholar 

  47. Papadatos G, Brown N (2013) In silico applications of bioisosterism in contemporary medicinal chemistry practice. WIREs Comput Mol Sci 3:339–354

    Article  CAS  Google Scholar 

  48. Boström J, Hogner A, Llinas A, Wellner E, Plowright AT (2012) Oxadiazoles in medicinal chemistry. J Med Chem 55:1817–1830

    Article  Google Scholar 

  49. Sutherland JJ, Raymond JW, Stevens JL, Baker TK, Watson DE (2012) Relating molecular properties and in vitro assay results to in vivo drug disposition and toxicity outcomes. J Med Chem 55:6455–6466

    Article  CAS  Google Scholar 

  50. Bach RD, Dmitrenko O (2004) Strain energy of small ring hydrocarbons. Influence of C–H bond dissociation energies. J Am Chem Soc 126:4444–4452

    Article  CAS  Google Scholar 

  51. Tian Z, Fattahi A, Lis L, Kass SR (2006) Cycloalkane and cycloalkene C–H bond dissociation energies. J Am Chem Soc 128:17087–17092

    Article  CAS  Google Scholar 

  52. Perrin CL, Fabian MA, Rivero IA (1999) Basicities of cycloalkylamines: Baeyer strain theory revisited. Tetrahedron 55:5773–5780

    Article  CAS  Google Scholar 

  53. ChEMBL version 15. http://www.ebi.ac.uk/chembl. Accessed 30 May 2013

  54. Hussain J, Rea C (2010) Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data sets. J Chem Inf Model 50:339–348

    Article  CAS  Google Scholar 

  55. Warner DJ, Griffen EJ, St-Gallay SA (2010) WizePairZ: a novel algorithm to identify, encode, and exploit matched molecular pairs with unspecified cores in medicinal chemistry. J Chem Inf Model 50:1350–1357

    Article  CAS  Google Scholar 

  56. Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, Bravi G, Richmond NJ, Pickett SD, Hussain J, Pritchard JM, Cooper AWJ, MacDonald SJF (2010) Lead optimization using matched molecular pairs: inclusion of contextual information for enhanced prediction of hERG inhibition, solubility, and lipophilicity. J Chem Inf Model 50:1872–1886

    Article  CAS  Google Scholar 

  57. Engel JC, Doyle PS, Hsieh I, McKerrow JH (1998) Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J Exp Med 188:725–734

    Article  CAS  Google Scholar 

  58. Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum Cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  59. Jaishankar P, Hansell E, Zhao D-M, Doyle PS, McKerrow JH, Renslo AR (2008) Potency and selectivity of P2/P3-modified inhibitors of cysteine proteases from trypanosomes. Bioorg Med Chem Lett 18:624–628

    Article  CAS  Google Scholar 

  60. Leach AG, Pilling EA, Rabow AA, Tomasi S, Asaad N, Buurma NJ, Ballard A, Narduolo S (2012) Enantiomeric pairs reveal that key medicinal chemistry parameters vary more than simple physical property based models can explain. Med Chem Commun 3:528–540

    Article  CAS  Google Scholar 

  61. Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, McKerrow JH, Craik CS, Rosenthal PJ, Brinen LS (2009) Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem 284:25697–25703

    Article  CAS  Google Scholar 

  62. OMEGA.OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/omega. Accessed 28 Feb 2013

  63. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer Generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and Cambridge structural database. J Chem Inf Model 50:572–584

    Google Scholar 

  64. Halgren TA (1999) MMFF VI. MMFF94S option for energy minimization studies. J Comp Chem 20:720–729

    Article  CAS  Google Scholar 

  65. SZYBKI. OpenEye Scientific Software, Santa Fe, NM 87508. http://www.eyesopen.com/szybki. Accessed 28 Feb 2013

  66. GLIDE. http://www.schrodinger.com/productpage/14/5/21/. Accessed 30 May 2013

Download references

Acknowledgments

We are grateful to the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Grant Numbers #2011/01893-3 and #2011/20572-3)) and the Conselho Nacional de Pesquisa (CNPq) for financial support. We thank OpenEye for an academic software license and the two anomymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Kenny.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenny, P.W., Montanari, C.A., Prokopczyk, I.M. et al. Automated molecule editing in molecular design. J Comput Aided Mol Des 27, 655–664 (2013). https://doi.org/10.1007/s10822-013-9676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-013-9676-0

Keywords

Navigation