Skip to main content
Log in

Modeling the evolution of drug resistance in malaria

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Plasmodium falciparum, the causal agent of malaria, continues to evolve resistance to frontline therapeutics such as chloroquine and sulfadoxine-pyrimethamine. Here we study the amino acid replacements in dihydrofolate reductase (DHFR) that confer resistance to pyrimethamine while still binding the natural DHFR substrate, 7,8-dihydrofolate, and cofactor, NADPH. The chain of amino acid replacements that has led to resistance can be inferred in a computer, leading to a broader understanding of the coevolution between the drug and target. This in silico approach suggests that only a small set of specific active site replacements in the proper order could have led to the resistant strains in the wild today. A similar approach can be used on any target of interest to anticipate likely pathways of future resistance for more effective drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Center of Disease Control. http://www.cdc.gov/malaria/about/facts.html, Accessed Jan 10, 2012

  2. Baron JM, Higgins JM, Dzik WH (2010) A revised timeline for the origin of Plasmodium falciparum as a human pathogen. J Mol Evol 73:297–304

    Article  Google Scholar 

  3. Ricklefs RE, Outlaw DC (2010) A molecular clock for malaria parasites. Science 329:226–229

    Article  CAS  Google Scholar 

  4. Ayala FJ, Escalante AA, Rich SM (1999) Evolution of Plasmodium and the recent origin of the world populations of Plasmodium falciparum. Parassitologia 41:55–68

    CAS  Google Scholar 

  5. Arisue N, Kawai S, Hirai M, Palacpac NM, Jia M, Kaneko A, Tanabe K, Horii T (2011) Cluster to evolution of the SERA mutigene family in 18 Plasmodium species. PLoS ONE 6:e17775

    Article  CAS  Google Scholar 

  6. Blakely RL (ed) (1985) Dihydrofolate Reductases. In: Folates and Pterins, Wiley, New York, pp 191–253

  7. Blakely RL (1995) In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, pp 23–102

  8. Wallace L, Matthews CR (2002) Highly divergent dihydrofolate reductases conserve complex folding mechanisms. J Mol Biol 315:193–211

    Article  CAS  Google Scholar 

  9. Ferone R (1977) Folate metabolism in malaria. Bull World Health Organ 55:291

    CAS  Google Scholar 

  10. Huennekens FM (1994) The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv Enzyme Regul 34:397

    Article  CAS  Google Scholar 

  11. Rollo IM (1970) Dihydrofolate reductase inhibitors as antimicrobial agents and their potentiation by sulfonamides. CRC Crit Rev Clin Lab Sci 1:565

    Article  CAS  Google Scholar 

  12. Bertino JR (2009) Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol 22:577–582

    Article  Google Scholar 

  13. Mita T, Tanabe MT, Kita K (2009) Spread and evolution of Plasmodium falciparum drug resistance. Parasit Int 58:201–209

    Article  CAS  Google Scholar 

  14. Volpato JP, Pelletier JN (2009) Mutational ‘hot-spots’ in mammalian, bacterial and protozoal resistance: sequence and structural comparison. Drug Resist Updat 12:28–41

    Article  CAS  Google Scholar 

  15. Zhanel GG, Wang X, Nichol K, Nikulin A, Wierzbowski AK, Mulvey M, Hoban DJ (2006) Molecular characterization of Canadian pediatric multi-drug resistant Streptococcus pneumonia from 1998–2004. Int J Antimicrob Agents 28:465–471

    Article  CAS  Google Scholar 

  16. Zhao S, McDermott PF, White DG, Qaiyumi S, Friedman SL, Abbott JW, Glenn A, Ayers SL, Post KW, Fales WH, Wilson RB, Reggiardo C, Walker RD (2007) Characterization of multidrug resistant Salmonella recovered from diseased animals. Vet Microbiol 123:122–132

    Article  CAS  Google Scholar 

  17. Payne D (1987) Spread of chloroquine resistance in Plasmodium falciparum. Parasitol Today B 3:241–246

    Article  CAS  Google Scholar 

  18. Wernsdorfer WH (1991) The development and spread of drug resistant malaria. Parasitol Today 7:297–303

    Article  CAS  Google Scholar 

  19. Saito-Nakano Y, Tanabe K, Kamei K, Iwagami M, Komaki-Yasuda K, Kawazu S, Kano S, Ohmae H, Endo T (2008) Genetic evidence for Plasmodium falciparum resistance to chloroquine and pyrimethamine in Indochina and the Western Pacific between 1984 and 1998. Am J Trop Med Hyg 79(4):613–619

    CAS  Google Scholar 

  20. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  22. Hecht D, Tran J, Fogel GB (2011) Structure-based anaylsis of dihydrofolate reductcase evolution. Mol Phylo Evol 61:212–230

    Article  CAS  Google Scholar 

  23. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  CAS  Google Scholar 

  24. Puigbò P, Garcia-Vallvé S, McInerney JO (2007) TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics 23:1556–1558

    Article  Google Scholar 

  25. Robinson DF, Foulds LR (1981) Comparison of phylogenetic trees. Math Biosci 53:131–147

    Article  Google Scholar 

  26. Steel MA, Penny D (1993) Distribution of tree comparison metrics—some new results. Syst Biol 42:126–141

    Google Scholar 

  27. Penny D, Hendy MD (1985) The use of tree metrics. Syst Zool 34:75–82

    Article  Google Scholar 

  28. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  Google Scholar 

  29. Korb O, Stützle T, Exner TE (2009) Empirical scoring functions for advanced protein-ligand docking with PLANTS. J Chem Inform Model 49:84–96

    Article  CAS  Google Scholar 

  30. Fogel GB, Cheung M, Pittman E, Hecht D (2008) In Silico screening against wild-type and mutant Plasmodium falciparum Dihydrofolate Reductase. J Mol Graph Model 26:1145–1152

    Article  CAS  Google Scholar 

  31. Fogel GB, Cheung M, Pittman E, Hecht D (2008) Modeling the inhibition of quadruple mutant plasmodium falciparum dihydrofolate reductase by pyrimethamine derivatives. J Comput Aided Mol Des 22:29–38

    Article  CAS  Google Scholar 

  32. Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Kretti AU, Ho M, Wang A, White NJ, Suh E, Berrli P, Su X-Z (2003) Early origin and recent expansion of Plasmodium falciparum. Science 300:318–321

    Article  CAS  Google Scholar 

  33. Hayakawa T, Culleton R, Otani H, Horii T, Tanabe K (2008) Big bang in the evolution of extant malaria parasites. Mol Biol Evol 25:2233–2239

    Article  CAS  Google Scholar 

  34. Escalante AA, Ayala FJ (1994) Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proc Natl Acad Sci USA 91:11373–11377

    Article  CAS  Google Scholar 

  35. Escalante AA, Barrio E, Ayala FJ (1995) Evolutionary origin of human and primate malarias: evidence from the circumsporozoite protein gene. Mol Biol Evol 12:616–626

    CAS  Google Scholar 

  36. Escalante AA, Freeland DE, Collins WE, Lal AA (1998) The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc Natl Acad Sci USA 95:8124–8129

    Article  CAS  Google Scholar 

  37. Walliker D, Sanderson A, Yoeli M, Hargreaves BJ (1976) A genetic investigation of virulence in a rodent malaria parasite. Parasitology 72:183–194

    Article  CAS  Google Scholar 

  38. Pattaradilokrat S, Cheesman SJ, Carter R (2008) Congenicity and genetic polymorphism in cloned lines derived from a single isolate of a rodent malaria parasite. Mol Biochem Parasitol 157:244–247

    Article  CAS  Google Scholar 

  39. Cowman AF, Lew AM (1989) Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi. Mol Cell Biol 9:5182–5188

    CAS  Google Scholar 

  40. Yuvaniyama J, Chitnumsub P, Kamchonwongpaison S, Vanichtanankul J, Sirawaraporn W, Taylor P, Walkinshaw M, Yuthavong Y (2003) Insights into antifolate resistance from malarial DHFR–TS structures. Nat Struct Biol 10:357–365

    Article  CAS  Google Scholar 

  41. Sirawaraporn W, Sathikul T, Sirawaraporn R, Yuthavong Y, Santi DV (1997) Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci USA 94:1124–1129

    Article  CAS  Google Scholar 

  42. Kongsaeree P, Khongsuk P, Leartsakulpanich U, Chitnumsub P, Tarnchombpoo B, Walkinshaw MD, Yuthavong Y (2005) Crystal structure of dihydrofolate reductase from Plasmodium vivax: pyrimethamine displacement linked with mutation-induced resistance. Proc Natl Acad Sci USA 102:13046–13051

    Article  CAS  Google Scholar 

  43. Peterson DS, Walliker D, Wellems TE (1988) Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85:9114–9118

    Article  CAS  Google Scholar 

  44. Lozovsky ER, Chookajorn T, Brown KM, Imwong M, Shaw PJ, Kamchonwongpaisan S, Neafsey DE, Weinreich DM, Hartl DL (2009) Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106:12025–12030

    Article  CAS  Google Scholar 

  45. Brown KM, Costanzo MS, Xu W, Roy S, Lozovsky ER, Hartl DL (2010) Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol Biol Evol 27:2682–2690

    Article  CAS  Google Scholar 

  46. Costanzo MS, Hartl DL (2011) The evolutionary landscape of antifolate resistance in Plasmodium falciparum. J Genet 90:187–190

    Article  CAS  Google Scholar 

  47. Hecht D, Fogel GB (2012) Towards predictive structure-based models of evolved drug resistance. 2012 IEEE computational intelligence in bioinformatics and computational biology, San Diego, pp 120–126

  48. Hecht D, Fogel G (2009) A novel in silico approach to drug discovery via computational intelligence. J Chem Inf Model 49:1105–1121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number SC3GM100791. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Patrick Rose and Doug McKenzie as well as the reviewers for valuable suggestions and insightful comments that helped make this a much more complete manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hecht, D., Fogel, G.B. Modeling the evolution of drug resistance in malaria. J Comput Aided Mol Des 26, 1343–1353 (2012). https://doi.org/10.1007/s10822-012-9618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-012-9618-2

Keywords

Navigation