Skip to main content
Log in

Visualisation and subsets of the chemical universe database GDB-13 for virtual screening

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The chemical universe database GDB-13, which enumerates 977 million organic molecules up to 13 atoms of C, N, O, S and Cl following simple chemical stability and synthetic feasibility rules, represents a vast reservoir for new fragments. GDB-13 was classified using the MQN-system discussed in the preceding paper for the analysis of PubChem fragments. Two hundred and fifty-five subsets of GDB-13 were generated by the combinatorial use of eight restrictive criteria, including fragment-like (“rule of three”) and scaffold-like (no acyclic carbon atoms) filters. Virtual screening for analogs of 15 commercial drugs of 13 non-hydrogen atoms or less shows that retrieving MQN-neighbors of a query molecule from GDB-13 or its subsets provides on average a 38-fold enrichment in structural analogs (Daylight-type substructure fingerprint Tanimoto T SF > 0.7), and a 75-fold enrichment in shape-similar analogs (ROCS TanimotoCombo score > 1.4). An MQN-searchable version of GDB-13 is provided at www.gdb.unibe.ch.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Coyne AG, Scott DE, Abell C (2010) Drugging challenging targets using fragment-based approaches. Curr Opin Chem Biol 14:299–307

    Article  CAS  Google Scholar 

  2. Schulz MN, Hubbard RE (2009) Recent progress in fragment-based lead discovery. Curr Opin Pharmacol 9:615–621

    Article  CAS  Google Scholar 

  3. Hartenfeller M, Schneider G (2011) De novo drug design. Methods Mol Biol 672:299–323

    Article  CAS  Google Scholar 

  4. Venhorst J, Nunez S, Kruse CG (2010) Design of a high fragment efficiency library by molecular graph theory. ACS Med Chem Lett 1:499–503

    Article  CAS  Google Scholar 

  5. Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10:987–992

    Article  CAS  Google Scholar 

  6. Rees DC, Congreve M, Murray CW, Carr R (2004) Fragment-based lead discovery. Nat Rev Drug Discov 3:660–672

    Article  CAS  Google Scholar 

  7. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219

    Article  CAS  Google Scholar 

  8. Boyd SM, de Kloe GE (2010) Fragment library design: efficiently hunting drugs in chemical space. Drug Discov Today 7:e173–e180

    Article  CAS  Google Scholar 

  9. Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    Article  CAS  Google Scholar 

  10. van Deursen R, Blum LC, Reymond JL (2011) Visualisation of the chemical space of fragments, lead-like and drug-like molecules in PubChem. J Comput Aided Mol Des. doi:10.1007/s10822-011-9437-x

  11. Blum LC, Reymond JL (2009) 970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. J Am Chem Soc 131:8732–8733

    Article  CAS  Google Scholar 

  12. Fink T, Bruggesser H, Reymond JL (2005) Virtual exploration of the small-molecule chemical universe below 160 daltons. Angew Chem Int Ed Engl 44:1504–1508

    Article  CAS  Google Scholar 

  13. Fink T, Reymond JL (2007) Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J Chem Inf Model 47:342–353

    Article  CAS  Google Scholar 

  14. Nguyen KT, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL (2008) Discovery of NMDA glycine site inhibitors from the chemical universe database GDB. ChemMedChem 3:1520–1524

    Article  CAS  Google Scholar 

  15. Nguyen KT, Luethi E, Syed S, Urwyler S, Bertrand S, Bertrand D, Reymond JL (2009) 3-(aminomethyl)piperazine-2, 5-dione as a novel NMDA glycine site inhibitor from the chemical universe database GDB. Bioorg Med Chem Lett 19:3832–3835

    Article  CAS  Google Scholar 

  16. Luethi E, Nguyen KT, Burzle M, Blum LC, Suzuki Y, Hediger M, Reymond JL (2010) Identification of selective norbornane-type aspartate analogue inhibitors of the glutamate transporter 1 (GLT-1) from the chemical universe generated database (GDB). J Med Chem 53:7236–7250

    Article  CAS  Google Scholar 

  17. Garcia-Delgado N, Bertrand S, Nguyen KT, van Deursen R, Bertrand D, Reymond J-L (2010) Exploring a7-nicotinic receptor ligand diversity by scaffold enumeration from the chemical universe database GDB. ACS Med Chem Lett 1:422–426

    Article  CAS  Google Scholar 

  18. Reymond JL, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical space as a source for new drugs. Med Chem Commun 1:30–38

    Article  CAS  Google Scholar 

  19. Nguyen KT, Blum LC, van Deursen R, Reymond JL (2009) Classification of organic molecules by molecular quantum numbers. ChemMedChem 4:1803–1805

    Article  CAS  Google Scholar 

  20. Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discov Des 9–11:339–353

    Article  Google Scholar 

  21. Geppert H, Vogt M, Bajorath J (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 50:205–216

    Article  CAS  Google Scholar 

  22. Akella LB, DeCaprio D (2010) Cheminformatics approaches to analyze diversity in compound screening libraries. Curr Opin Chem Biol 14:325–330

    Article  CAS  Google Scholar 

  23. Irwin JJ, Shoichet BK (2005) ZINC—A free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  Google Scholar 

  24. van Deursen R, Blum LC, Reymond JL (2010) A searchable map of PubChem. J Chem Inf Model 50:1924–1934

    Article  Google Scholar 

  25. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  Google Scholar 

  26. Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    CAS  Google Scholar 

  27. Rush TS III, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489–1495

    Article  CAS  Google Scholar 

  28. McKay BD (1981) Practical graph isomorphism. Congr Numerantium 30:45–87

    Google Scholar 

  29. Warr WA (1993) Computer-assisted structure elucidation. Part II: indirect database approaches and established systems. Anal Chem 65:1087A–1095A

    Article  CAS  Google Scholar 

  30. Steinbeck C (2004) Recent developments in automated structure elucidation of natural products. Nat Prod Rep 21:512–518

    Article  CAS  Google Scholar 

  31. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1:8

    Article  Google Scholar 

  32. Congreve M, Carr R, Murray C, Jhoti H (2003) A rule of three for fragment-based lead discovery? Drug Discov Today 8:876–877

    Article  Google Scholar 

  33. Kolb P, Ferreira RS, Irwin JJ, Shoichet BK (2009) Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 20:429–436

    Article  CAS  Google Scholar 

  34. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  Google Scholar 

  35. Khalifa AA, Haranczyk M, Holliday J (2009) Comparison of nonbinary similarity coefficients for similarity searching, clustering and compound selection. J Chem Inf Model 49:1193–1201

    Article  Google Scholar 

  36. Hawkins PC, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50:74–82

    Article  CAS  Google Scholar 

  37. Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886

    Article  CAS  Google Scholar 

  38. Schneider G, Neidhart W, Giller T, Schmid G (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896

    Article  CAS  Google Scholar 

  39. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported financially by the University of Berne, the Swiss National Science Foundation and the Office Fédéral Suisse de l’Education et de la Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Reymond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, L.C., van Deursen, R. & Reymond, JL. Visualisation and subsets of the chemical universe database GDB-13 for virtual screening. J Comput Aided Mol Des 25, 637–647 (2011). https://doi.org/10.1007/s10822-011-9436-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9436-y

Keywords

Navigation