Skip to main content
Log in

Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A novel structure-based approach for site of metabolism prediction has been developed. This knowledge-based method consists of three steps: (1) generation of possible metabolites, (2) docking the predicted metabolites to the CYP binding site and (3) selection of the most probable metabolites based on their complementarity to the binding site. As a proof of concept we evaluated our method by using MetabolExpert for metabolite generation and Glide for docking into the binding site of the CYP2C9 crystal structure. Our method could identify the correct metabolite among the three best-ranked compounds in 69% of the cases. The predictive power of our knowledge-based method was compared to that achieved by substrate docking and two alternative literature approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2:192–204

    Article  Google Scholar 

  2. Ahlström MM, Ridderström M, Zamora I (2007) CYP2C9 structure-metabolism relationships: substrates, inhibitors, and metabolites. J Med Chem 50:5382–5391

    Article  Google Scholar 

  3. Trunzer M, Faller B, Zimmerlin A (2009) Metabolic soft spot identification and compound optimization in early discovery phases using MetaSite and LC-MS/MS validation. J Med Chem 52:329–335

    Article  CAS  Google Scholar 

  4. Vasanthanathan P, Hritz J, Taboureau O, Olsen L, Jørgensen FS, Vermeulen NP, Oostenbrink C Virtual screening and prediction of site of metabolism for cytochrome P450 1A2 ligands. J Chem Inf Model 49:43–52

  5. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287:1615–1622

    Article  CAS  Google Scholar 

  6. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinković D, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468

    Article  CAS  Google Scholar 

  7. Pang KS (2009) Safety testing of metabolites: expectations and outcomes. Chem Biol Interact 179:45–59

    Article  CAS  Google Scholar 

  8. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208

    Article  CAS  Google Scholar 

  9. Miners JO, Birkett DJ (1998) Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 45:525–538

    Article  CAS  Google Scholar 

  10. Sykes MJ, McKinnon RA, Miners JO (2008) Prediction of metabolism by cytochrome P450 2C9: alignment and docking studies of a validated database of substrates. J Med Chem 51:780–791

    Article  CAS  Google Scholar 

  11. Wester MR, Yano JK, Schoch GA, Yang C, Griffin KJ, Stout CD, Johnson EF (2004) The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279:35630–35637

    Article  CAS  Google Scholar 

  12. Polgár T, Menyhárd DK, Keseru GM (2007) Effective virtual screening protocol for CYP2C9 ligands using a screening site constructed from flurbiprofen and S-warfarin pockets. J Comput Aided Mol Des 9:539–548

    Article  Google Scholar 

  13. Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P (2007) What common structural features and variations of mammalian P450 s are known to date? Biochim Biophys Acta 1770:376–389

    CAS  Google Scholar 

  14. Bikádi Z, Hazai E (2008) In silico description of differential enantioselectivity in methoxychlor O-demethylation by CYP2C enzymes. Biochim Biophys Acta 1780:1070–1079

    Google Scholar 

  15. Rao S, Aoyama R, Schrag M, Trager WF, Rettie A, Jones JP (2000) A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J Med Chem 43:2789–2796

    Article  CAS  Google Scholar 

  16. Afzelius L, Zamora I, Ridderström M, Andersson TB, Karlén A, Masimirembwa CM (2001) Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol Pharmacol 59:909–919

    CAS  Google Scholar 

  17. de Groot MJ, Alex AA, Jones BC (2002) Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J Med Chem 45:1983–1993

    Article  Google Scholar 

  18. Zamora I, Afzelius L, Cruciani G (2003) Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J Med Chem 46:2313–2324

    Article  CAS  Google Scholar 

  19. Boyer S, Zamora I (2002) New methods in predictive metabolism. J Comput Aided Mol Des 5–6:403–413

    Article  Google Scholar 

  20. Sheridan RP, Korzekwa KR, Torres RA, Walker MJ (2007) Empirical regioselectivity models for human cytochromes P450 3A4, 2D6, and 2C9. J Med Chem 50:3173–3184

    Article  CAS  Google Scholar 

  21. Peng CC, Cape JL, Rushmore T, Crouch GJ, Jones JP (2008) Cytochrome P450 2C9 type II binding studies on quinoline-4-carboxamide analogues. J Med Chem 51:8000–8011

    Article  CAS  Google Scholar 

  22. Cruciani G, Carosati E, De Boeck B, Ethirajulu K, Mackie C, Howe T, Vianello R (2005) MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979

    Article  CAS  Google Scholar 

  23. ROCS Openeye Scientific Software: Sante Fe, NM, 2006

  24. FRED Openeye Scientific Software: Sante Fe, NM, 2005

  25. Verkivker GM, Bouzida D, Gehlaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T, Rose PW (2000) Deciphering common failures in molecular docking of ligand-protein complexes. J Comp-Aided Mol Des 14:731–751

    Article  Google Scholar 

  26. Ortiz de Montellano PR (2005) Cytochrome P450 structure, mechanism, and biochemistry. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  27. Peterson JA, Graham SE (1998) A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6:1079–1085

    Article  CAS  Google Scholar 

  28. Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25:5314–5322

    Article  CAS  Google Scholar 

  29. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260:16122–16130

    CAS  Google Scholar 

  30. Li H, Narasimhulu S, Havran LM, Winkler JD, Poulos TL (1995) Crystal structure of cytochrome P-450 complexe with its catalytic product, 5-Exo-Hydroxycamphor. J Am Chem Soc 117:6297–6299

    Article  CAS  Google Scholar 

  31. Raag R, Poulos TL (1989) Crystal structure of the carbon monoxide-substrate-cytochrome P-450CAM ternary complex. Biochemistry 28:7586–7592

    Article  CAS  Google Scholar 

  32. CompuDrug International, Inc (2003) 115 Morgan Drive, Sedona, AZ 86351, USA

  33. Glide, version 5.0 (2008) Schrödinger, LLC, New York

  34. National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/sites/entrez Accessed 2009 February

  35. ChemAxon http://www.chemaxon.com Accessed 2009 February

  36. CompuDrug http://www.compudrug.com Accessed 2009 February

  37. He M, Korzekwa KR, Jones JP, Rettie AE, Trager WF (1999) Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 372:16–28

    Article  CAS  Google Scholar 

  38. LigPrep, version 2.3 (2009) Schrödinger, LLC, New York

  39. McGaughey GB, Sheridan RP, Bayly CI, Culberson JC, Kreatsoulas C, Lindsley S, Maiorov V, Truchon JF, Cornell WD (2007) Comparison of topological, shape, and docking methods in virtual screening. J Chem Inf Model 47:1504–1519

    Article  CAS  Google Scholar 

  40. Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) Validation of molecular docking programs for virtual screening against Dihydropteroate synthase. J Chem Inf Model 49:444–460

    Article  CAS  Google Scholar 

  41. Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  Google Scholar 

  42. Lee H, Ortiz de Montellano PR, McDermott AE (1999) Deuterium magic angle spinning studies of substrates bound to cytochrome P450. Biochemistry 38:10808–10813

    Article  CAS  Google Scholar 

  43. UNITY, Tripos Inc. 1699 South Hanley Road St. Louis, MO 63144-2319 USA

  44. Zhou D, Afzelius L, Grimm SW, Andersson TB, Zauhar RJ, Zamora I (2006) Comparison of methods for the prediction of the metabolic sites for CYP3A4-mediated metabolic reactions. Drug Metab Dispos 6:976–983

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Márk Sándor for his useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György M. Keserű.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarcsay, Á., Kiss, R. & Keserű, G.M. Site of metabolism prediction on cytochrome P450 2C9: a knowledge-based docking approach. J Comput Aided Mol Des 24, 399–408 (2010). https://doi.org/10.1007/s10822-010-9347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-010-9347-3

Keywords

Navigation