Skip to main content

Advertisement

Log in

Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A combined approach of validated QSAR modeling and virtual screening was successfully applied to the discovery of novel tylophrine derivatives as anticancer agents. QSAR models have been initially developed for 52 chemically diverse phenanthrine-based tylophrine derivatives (PBTs) with known experimental EC50 using chemical topological descriptors (calculated with the MolConnZ program) and variable selection k nearest neighbor (kNN) method. Several validation protocols have been applied to achieve robust QSAR models. The original dataset was divided into multiple training and test sets, and the models were considered acceptable only if the leave-one-out cross-validated R 2 (q 2) values were greater than 0.5 for the training sets and the correlation coefficient R 2 values were greater than 0.6 for the test sets. Furthermore, the q 2 values for the actual dataset were shown to be significantly higher than those obtained for the same dataset with randomized target properties (Y-randomization test), indicating that models were statistically significant. Ten best models were then employed to mine a commercially available ChemDiv Database (ca. 500 K compounds) resulting in 34 consensus hits with moderate to high predicted activities. Ten structurally diverse hits were experimentally tested and eight were confirmed active with the highest experimental EC50 of 1.8 μM implying an exceptionally high hit rate (80%). The same ten models were further applied to predict EC50 for four new PBTs, and the correlation coefficient (R 2) between the experimental and predicted EC50 for these compounds plus eight active consensus hits was shown to be as high as 0.57. Our studies suggest that the approach combining validated QSAR modeling and virtual screening could be successfully used as a general tool for the discovery of novel biologically active compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newman DJ, Cragg GM, Snader KM (2003) J Nat Prod 66:1022

    Article  CAS  Google Scholar 

  2. Gellert E, Rudzats R (1964) J Med Chem 15:361

    Article  Google Scholar 

  3. Rao KV, Wilson RA, Cummings B (1971) J Pharm Sci 60:1725

    Article  CAS  Google Scholar 

  4. Pettit GR, Goswami A, Cragg GM, Schmidt JM, Zou JC (1984) J Nat Prod 47:913

    Article  CAS  Google Scholar 

  5. Suffness M, Cordell GA (1985) The alkaloids, chemistry and pharmacology. Academic Press, New York, pp 3–355

    Google Scholar 

  6. The 60-cell line NCI test data, along with in vivo data can be accessed from the NSC numbers at the following web site. http://dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp. 2006.

  7. Donaldson GR, Atkinson MR, Murray AW (1968) Biochem Biophys Res Commun 31:104

    Article  CAS  Google Scholar 

  8. Huang MT, Grollman AP (1972) Mol Pharmacol 8:538

    CAS  Google Scholar 

  9. Grant P, Sanchez L, Jimenez A (1974) J Bacteriol 120:1308

    CAS  Google Scholar 

  10. Gupta RS, Siminovitch L (1977) Biochemistry 16:3209

    Article  CAS  Google Scholar 

  11. Rao KN, Bhattacharya RK, Venkatachalam SR (1997) Chem Biol Interact 106:201

    Article  CAS  Google Scholar 

  12. Rao KN, Venkatachalam SR (2000) Toxicol In Vitro 14:53

    Article  CAS  Google Scholar 

  13. Ganguly T, Khar A (2002) Phytomedicine 9:288

    Article  CAS  Google Scholar 

  14. Gao W, Lam W, Zhong S, Kaczmarek C, Baker DC, Cheng YC (2004) Cancer Res 64:678

    Article  CAS  Google Scholar 

  15. Suffness M, Douros JD (1980) Anticancer agents based on natural product models. Academic Press, London, pp 465–487

    Google Scholar 

  16. Staerk D, Lykkeberg AK, Christensen J, Budnik BA, Abe F, Jaroszewski JW (2002) J Nat Prod 65:1299

    Article  CAS  Google Scholar 

  17. Wei L, Brossi A, Kendall R, Bastow KF, Morris-Natschke SL, Shi Q, Lee KH (2006) Bioorg Med Chem 14:6560

    Article  CAS  Google Scholar 

  18. Hadjipavloulitina D, Hansch C (1994) Chem Rev 94:1483

    Article  CAS  Google Scholar 

  19. Hansch C, Muir RM, Fujita T, Maloney PP, Geiger E, Streich M (1963) J Am Chem Soc 85:2817

    Article  CAS  Google Scholar 

  20. Klein TE, Huang C, Ferrin TE, Langridge R, Hansch C (1986) Acs Symposium Series 306:147

    Article  CAS  Google Scholar 

  21. Kubinyi H (1986) Chemie in Unserer Zeit 20:191

    Article  CAS  Google Scholar 

  22. Tropsha A (2006) In: Martin YC (ed) Comprehensive medicinal chemistry II. Elsevier, pp 113–126

  23. Tropsha A (2005) In: Oprea T (ed) Cheminformatics in drug discovery. Wiley-VCH, pp 437–455

  24. Tropsha A, Cho SJ, Zheng W (1999) In: Parrill AL, Reddy MR (eds) Rational drug design: Novel methodology and practical applications. pp 198–211

  25. Zheng WF, Tropsha A (2000) J Chem Inf Comput Sci 40:185

    Article  CAS  Google Scholar 

  26. Shen M, Beguin C, Golbraikh A, Stables JP, Kohn H, Tropsha A (2004) J Med Chem 47:2356

    Article  CAS  Google Scholar 

  27. Oloff S, Mailman RB, Tropsha A (2005) J Med Chem 48:7322

    Article  CAS  Google Scholar 

  28. MolConn Z [4.05] (2002) Quincy, MA, Hall Associates Consulting

  29. Golbraikh A, Tropsha A (2002) J Mol Graph Model 20:269

    Article  CAS  Google Scholar 

  30. ChemDiv (2005) http://www.chemdiv.com

  31. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR (1990) J Natl Cancer Inst 82:1113

    Article  CAS  Google Scholar 

  32. SYBYL (2004) [Version 7.0] Tripos, Inc, St Louis, MO

  33. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York

    Google Scholar 

  34. Benigni R, Giuliani A, Franke R, Gruska A (2000) Chem Rev 100:3697

    Article  CAS  Google Scholar 

  35. Oloff S, Zhang S, Sukumar N, Breneman C, Tropsha A (2006) J Chem Inf Model 46:844

    Article  CAS  Google Scholar 

  36. Trohalaki S, Gifford E, Pachter R (2000) Comput Chem 24:421

    Article  CAS  Google Scholar 

  37. Zhang S, Golbraikh A, Tropsha A (2006) J Med Chem 49:2713

    Article  CAS  Google Scholar 

  38. Zhang S, Golbraikh A, Oloff S, Kohn H, Tropsha A (2006) J Chem Inf Model 46:1984

    Article  CAS  Google Scholar 

  39. Kubinyi H, Hamprecht FA, Mietzner T (1998) J Med Chem 41:2553

    Article  CAS  Google Scholar 

  40. Golbraikh A, Tropsha A (2002) J Comput Aided Mol Des 16:357

    Article  CAS  Google Scholar 

  41. Snarey M, Terrett NK, Willett P, Wilton DJ (1997) J Mol Graph Model 15:372

    Article  CAS  Google Scholar 

  42. Sharaf MA, Illman DL, Kowalski BR (1986) Chemometrics. John Wiley & Sons, New York, pp 1–332

    Google Scholar 

  43. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) J Chem Phys 21:1087

    Google Scholar 

  44. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

  45. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) J Comput Aided Mol Des 17:241

    Article  CAS  Google Scholar 

  46. Wold S, Eriksson L (1995) In: Waterbeemd Hvd (ed) Chemometrics methods in molecular design. VCH, pp 309–318

  47. Wu PL, Rao KV, Su C-H, Kuoh C-S, Wu T-S (2002) Heterocycles 57:2401

    Article  CAS  Google Scholar 

  48. Brown RD, Martin YC (1998) Environ Res 8:23

    CAS  Google Scholar 

Download references

Acknowledgment

This investigation was supported by grant CA17625 from National Cancer Institute awarded to K. H. Lee and by grants GM066940 and P20-RR20751 awarded to AT. We wish to thank Dr. Susan L. Morris-Natschke for her critical reading of the manuscript and Dr. Lowell Hall for his comments on the interpretation of MolConnZ descriptors. The authors dedicate this paper to Dr. Yvonne C. Martin who has been a source of inspiration and encouragement for many years to the senior author.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuo-Hsiung Lee or Alexander Tropsha.

Additional information

Shuxing Zhang and Linyi Wei have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Wei, L., Bastow, K. et al. Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des 21, 97–112 (2007). https://doi.org/10.1007/s10822-007-9102-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-007-9102-6

Keywords

Navigation