Skip to main content
Log in

Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors

  • Original Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

G-protein coupled receptors (GPCRs) comprise a large superfamily of proteins that are targets for nearly 50% of drugs in clinical use today. In the past, the use of structure-based drug design strategies to develop better drug candidates has been severely hampered due to the absence of the receptor’s three-dimensional structure. However, with recent advances in molecular modeling techniques and better computing power, atomic level details of these receptors can be derived from computationally derived molecular models. Using information from these models coupled with experimental evidence, it has become feasible to build receptor pharmacophores. In this study, we demonstrate the use of the Hybrid Structure Based (HSB) method that can be used effectively to screen and identify prospective ligands that bind to GPCRs. Essentially; this multi-step method combines ligand-based methods for building enriched libraries of small molecules and structure-based methods for screening molecules against the GPCR target. The HSB method was validated to identify retinal and its analogues from a random dataset of ∼300,000 molecules. The results from this study showed that the 9 top-ranking molecules are indeed analogues of retinal. The method was also tested to identify analogues of dopamine binding to the dopamine D2 receptor. Six of the ten top-ranking molecules are known analogues of dopamine including a prodrug, while the other thirty-four molecules are currently being tested for their activity against all dopamine receptors. The results from both these test cases have proved that the HSB method provides a realistic solution to bridge the gap between the ever-increasing demand for new drugs to treat psychiatric disorders and the lack of efficient screening methods for GPCRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Takeda S, Kadowaki S, Haga T, Takaesu H, Mitaku S (2002) FEBS Lett 520(1–3):97

  2. Birnbaumer L, Brown AM (1990) Am Rev Respir Dis 141(3 Pt 2):S106

    CAS  Google Scholar 

  3. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Cell 96(4):541

    Article  CAS  Google Scholar 

  4. Bourne HR, Sanders DA, McCormick F (1991) Nature 349(6305):117

    Article  CAS  Google Scholar 

  5. Hamm HE (1998) J Biol Chem 273(2):669

    Article  CAS  Google Scholar 

  6. Garver DL, Schlemmer RF Jr, Maas JW, Davis JM (1975) Am J Psychiatry 132(1):33

    CAS  Google Scholar 

  7. Peroutka SJ, Snyder SH (1980) Science 210:88

    Article  CAS  Google Scholar 

  8. Comings DE (2001) Ann N Y Acad Sci 931:50

    Article  CAS  Google Scholar 

  9. Saxena PR, Ferrari MD (1989) Trends Pharmacol Sci 10(5):200

    Article  CAS  Google Scholar 

  10. Hallsworth MP, Twort CH, Lee TH, Hirst SJ (2001) Br J Pharmacol 132:729

    Article  CAS  Google Scholar 

  11. Amer MS (1977) Biochem Pharmacol 26(3):171

    Article  CAS  Google Scholar 

  12. Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PL, McCloskey TC, Johnson MP, McCarty DR, Poirot M, Senyah Y, Siegel BW, Widmaier C (1996) J Pharmacol Exp Ther 277(2):968

    CAS  Google Scholar 

  13. Peroutka SJ, U’Prichard DC, Greenberg DA, Snyder SH (1977) Neuropharmacology 16(9):549

    Article  CAS  Google Scholar 

  14. Carpenter WT Jr, Heinrichs DW, Wagman AM (1988) Am J Psychiatry 145(5):578

    Google Scholar 

  15. Worrel JA, Marken PA, Beckman SE, Ruehter VL (2000) Am J Health Syst Pharm 57(3):238

    CAS  Google Scholar 

  16. Fann WE, Sullivan JL, Richman BW (1976) Br J Psychiatry 128:490

    CAS  Google Scholar 

  17. Attwood TK (2001) Trends Pharmacol Sci 22(4):162

    Article  CAS  Google Scholar 

  18. Rognan D (2006) J Physiol Paris 99(2–3):232

    Article  Google Scholar 

  19. Shoichet BK (2004) Nature 432(7019):862

    Article  CAS  Google Scholar 

  20. Jorgensen WL (2004) Science 303(5665):1813

    Article  CAS  Google Scholar 

  21. Bissantz C, Bernard P, Hibert M, Rognan D (2003) Proteins 50(1):5

    Article  CAS  Google Scholar 

  22. Kortagere S, Gmeiner P, Weinstein H, Schetz JA (2004) Mol Pharmacol 66(6):1491

    Article  CAS  Google Scholar 

  23. Floresca CZ, Chen S, Kortagere S, Schetz JA (2005) Arch Pharm (Weinheim) 338(5–6):268

    Article  CAS  Google Scholar 

  24. Irwin JJ, Shoichet BK (2005) J Chem Inf Model 45(1):177

    CAS  Google Scholar 

  25. Zauhar RJ, Moyna G, Tian L, Li Z, Welsh WJ (2003) J Med Chem 46(26):5674

    Article  CAS  Google Scholar 

  26. Zauhar RJ (1995) J Comput Aided Mol Des 9(2):149

    Article  CAS  Google Scholar 

  27. Keener JP (1988) Principles of applied mathematics. Addison-Wesley

  28. Stewart JJ (1990) J Comput-Aided Mol Des 4:1

    Article  Google Scholar 

  29. Bairoch A, Apweiler R (1997) J Mol Med 75:312

    CAS  Google Scholar 

  30. Higgins D, Thompson J., Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) Nucl Acid Res 22:4673

    Article  Google Scholar 

  31. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G (2003) Nucl Acid Res 31:294

    Article  CAS  Google Scholar 

  32. Visiers I, Ballesteros JA, Weinstein H (2002) Methods Enzymol 343:329

    Google Scholar 

  33. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Proteins Struct Funct Genet 23:318

    Article  CAS  Google Scholar 

  34. Visiers I, Braunheim BB, Weinstein H (2000) Protein Eng 13(9):603

    Article  CAS  Google Scholar 

  35. Sansom MS, Weinstein H (2000) Trends Pharmacol Sci 21(11):445

    Article  CAS  Google Scholar 

  36. Mehler El, Hassan SA, Kortagere S, Weinstein H (2006) Ab initio computational modeling of loops in G-protein coupled receptors: Lessons from the crystal structure of rhodopsin. Proteins 64(3):673

    Article  CAS  Google Scholar 

  37. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187

    Article  CAS  Google Scholar 

  38. Li X, Hassan SA, Mehler EL (2005) Proteins 60(3):464

    Article  CAS  Google Scholar 

  39. Hassan SA, Mehler EL, Zhang D, Weinstein H (2003) Proteins 51(1):109

    Article  CAS  Google Scholar 

  40. Lazaridis T (2005) Proteins 58(3):518

    Article  CAS  Google Scholar 

  41. Mottamal M, Lazaridis T (2005) Biochemistry 44(5):1607

    Article  CAS  Google Scholar 

  42. Javitch JA (1998) Adv Pharmacol 42:412

    CAS  Google Scholar 

  43. Jensen AD, Guarnieri F, Rasmussen SG, Asmar F, Ballesteros JA, Gether U (2001) J Biol Chem 276(12):9279

    Article  CAS  Google Scholar 

  44. Gether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK (1997) EMBO J 16(22):6737

    Article  CAS  Google Scholar 

  45. Rasmussen SG, Jensen AD, Liapakis G, Ghanouni P, Javitch JA, Gether U (1999) Mol Pharmacol 56(1):175

    CAS  Google Scholar 

  46. Pearlman DA, Case DA, Caldwell JW, Ross WR, Cheatham TE III, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Comp Phys Commun 91:1

    Article  CAS  Google Scholar 

  47. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) J Mol Biol 267:727

    Article  CAS  Google Scholar 

  48. Gohlke H, Klebe G (2001) Curr Opin Struct Biol 11(2):231

    Article  CAS  Google Scholar 

  49. Muegge I, Martin YC (1999) J Med Chem 42:791

    Article  CAS  Google Scholar 

  50. Eldridge MD, Murray CW, Auton TR, Paolinine GV, Mee RP (1997) J Comput-Aided Mol Des 11:425

    Article  CAS  Google Scholar 

  51. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucl Acids Res 28:235

    Article  CAS  Google Scholar 

  52. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Science 289(5480):739

    Article  CAS  Google Scholar 

  53. Fanelli F, Dell’Orco D (2005) Biochemistry 44(45):14695

    Article  CAS  Google Scholar 

  54. Ludeke S, Beck M, Yan EC, Sakmar TP, Sibert F, Vogel R (2005) J Mol Biol 353(2):345

    Article  CAS  Google Scholar 

  55. Patel AB, Crocker E, Reeves PJ, Getmanova EV, Eilers M, Khorana HG, Smith SO (2005) J Mol Biol 347(4):803

    Article  CAS  Google Scholar 

  56. Perez DM, Karnik SS (2005) Pharmacol Rev 57(2):147

    Article  CAS  Google Scholar 

  57. Tota MR, Strader CD (1990) J Biol Chem 265(28):16891

    CAS  Google Scholar 

  58. Mackerell AD Jr, Bashford D, Bellot M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, et al (1998) J Phys Chem B 102:3586

    Article  CAS  Google Scholar 

  59. Ballesteros JA, Weinstein H (1995) Methods Neurosci 25:366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge access to the computational facilities at UMDNJ-Informatics Institute and the Academic computing services. Dr. Peng Zhang is also acknowledged for providing programming expertise. Finally, this study was partially supported by a grant from the National Library of Medicine, National Institutes of Health (G08 LM6230-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Welsh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortagere, S., Welsh, W.J. Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors. J Comput Aided Mol Des 20, 789–802 (2006). https://doi.org/10.1007/s10822-006-9077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-006-9077-8

Keywords

Navigation