Skip to main content
Log in

Automated QSPR through Competitive Workflow

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

This paper describes a novel software architecture, Competitive Workflow, which implements workflow as a distributed and competitive multi-agent system. The implementation of a competitive workflow architecture designed to model important computer-aided molecular design workflows, the Discovery Bus, is described. QSPR modelling results for three example ADME datasets, for solubility, human plasma protein binding and P-glycoprotein substrates using an autonomous QSPR modelling workflow implemented on the Discovery Bus are presented. The autonomous QSPR system allows exhaustive exploration of descriptor and model space, automated model validation and continuous updating as new data and methods are made available. Prediction of properties of novel structures by an ensemble of models is also a feature of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Aalst W.M.P., Barros A.P., ter Hofstede A.H.M., Kiepuszewski B., 2000; Advanced workflow In Etzion O., Scheuermann P., eds 7th International Conference on Cooperative Information Systems, 2000 Springer-Verlag, Berlin: 18–29

    Google Scholar 

  2. van der Aalst W.M.P., ter Hofstede A.H.M., Kiepuszewski B., Barros A.P., (2003) Distributed Parallel Databases14: 5

    Article  Google Scholar 

  3. Oinn T., Addis M., Ferris J., Marvin D., Senger M., Greenwood M., Carver T., Glover K., Pocock M.R., Wipat A., Li P., (2004) Bioinformatics 20: 3045

    Article  CAS  Google Scholar 

  4. Oinn, T. M., Addis, M., Ferris, J., Marvin, D., Greenwood, T., Carver, T., Wipat, A. and Li, P. In Taverna, Lessons in Creating a Workflow Environment for the Life Sciences, 10th Global Grid Forum, Berlin, 2004

  5. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludaescher, B. and Mock, S. In Kepler: Towards a Grid-enabled System for Scientific Workflows, 10th Global Grid Forum, Berlin, 2004

  6. Corkill D.D., 2003. In Collaborating Software: Blackboard and Multi-agent Systems & The Future Proceedings of the National Lisp Conference New York

    Google Scholar 

  7. Repetto, M., Paolucci, M. and Boccalatte, A. In A Design Tool to Develop Agent-based Workflow Management Systems, 4th AI*IA/TABOO Joint Workshop “From Objects to Agents”: Intelligent Systems and Pervasive Computing, Villasimius, Italy, 2003; Pitagora Editrice Bologna

  8. Ramampiaro, H., Wang, A. I. and Brasethvik, T. In Supporting distributed cooperative work in cagis, 7th European Workshop Software Process Technology, Kaprun, Austria, 2000; Conradi, R. Springer: Kaprun, Austria, p.␣115

  9. Weiss G., Sen S., 1999; Learning in multiagent systems In Weiss G., ed.; Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence Vol 260 MIT Press Cambridge, MA

    Google Scholar 

  10. Corradini F., Mariani L., Merelli E., (2004) Int. J. Software Tools Technol. Transfer6: 231

    Article  Google Scholar 

  11. Armano, G., Milanesi, L. and Orro, A., In An agent architecture for predicting protein secondary structure, NETTAB 2002: Agents in Bioinformatics, Bologna, Italy, 2002

  12. Peleg, M.,Yeh, I. and Altman, R., Bioinformatics, 18 (2002) 825

  13. Olah M., Bologa C., Oprea T.I., (2004) J. Comput. Aided Mol. Des.18: 437

    Article  CAS  Google Scholar 

  14. Kovatcheva A., Golbraikh A., Oloff S., Xiao Y. D., Zheng W., Wolschann P., Buchbauer G., Tropsha A., (2004) J. Chem. Inf. Comput. Sci.44: 582

    Article  CAS  Google Scholar 

  15. Ferber J., 1999. Multi-agent Systems. An Introduction to Distributed Artificial Intelligence Pearson Education Limited London

    Google Scholar 

  16. Tarbit M.H., Berman J., (1998) Curr. Opin. Chem. Biol. 2: 411

    Article  CAS  Google Scholar 

  17. Rodrigues A.D., (1994) Biochem. Pharmacol. 48: 2147

    Article  CAS  Google Scholar 

  18. Eddershaw P.J., Dickins M., (1999) Pharm. Sci. Technol. Today 2: 13

    Article  CAS  Google Scholar 

  19. van de Waterbeemd H., (2002) Curr. Opin. Drug Discov. Devel 5: 33

    Google Scholar 

  20. Leach A.R., Gillet V.J., 2003; An introduction to chemoinformatics Kluwer Academic Publishers Dordrecht, The Netherlands ‘Vol.’ 77–101

    Google Scholar 

  21. ACD Physchem batch, http://www.acdlabs.com/products/

  22. Todeschini, R., Consonni, V., Mauri A. and Pavan M., 2004. Dragon plus version 5.1

  23. Hall L.H., Kier L.B., (1995) J. Chem. Inf. Comput. Sci. 35: 1039

    Article  CAS  Google Scholar 

  24. Abraham M.H., (1993) Chem. Soc. Rev. 22: 73

    Article  CAS  Google Scholar 

  25. Breneman C.M., Sundling C.M., Sukumar N., Lingling S., Katt W.P., Embrechts M.J., (2003) J. Comput. Aided Mol. Design 17: 231

    Article  CAS  Google Scholar 

  26. Hall M.A., 2000; In Correlation-based feature selection of discrete and numeric class machine learning, Proceedings of the International Conference on Machine Learning, San Francisco, CA, 2000 Morgan Kaufmann San Francisco, CA 359–366

    Google Scholar 

  27. Hall M.A., 1999. Correlation-based Feature Selection for Machine Learning Waikato New Zealand

    Google Scholar 

  28. Loh W.-Y., (2002) Statistica Sinica 12: 361–386

    Google Scholar 

  29. Venables, W.N. and Ripley, B., Modern applied statistics with S. 4th ed.; Springer: 2002

  30. Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., Classification and regression trees. ed.; 1984

  31. Yang J., Honavar V., (1998) IEEE Trans. Intelligent Syst. 13: 44

    Article  Google Scholar 

  32. So S.S., Karplus M., (1996) J. Med. Chem. 39: 152

    Google Scholar 

  33. Huuskonen J., (2000) J. Chem. Inf. Comput. Sci. 40: 733

    Article  CAS  Google Scholar 

  34. Colmenarejo G., Alvarez-Pedraglio A., Lavandera J., (2001) J. Med. Chem.44: 4370

    Article  CAS  Google Scholar 

  35. Xue Y., Yap C.W., Sun L.Z., Cao Z.W., Wang J.F., Chen Y.Z., (2004) J. Chem. Inf. Comput. Sci. 44: 1497

    Article  CAS  Google Scholar 

  36. Huuskonen J.J., Livingstone D.J., Tetko I.V., (2000) J. Chem. Inf. Comput. Sci.40: 947

    Article  CAS  Google Scholar 

  37. Herve F., Urien S., Albengres E., Duche J.-C., Tillement J., (1994) Clin. PharmacoKinet. 26: 44

    Article  CAS  Google Scholar 

  38. Schmitt L., Tampe R., (2002) Curr. Opin. Struct. Biol. 12: 754

    Article  CAS  Google Scholar 

  39. van Veen H.W., Konings W.N., (1998) Adv. Exp. Med. Biol. 456: 145

    Google Scholar 

  40. Gottesman M.M., Pastan I., Ambudker S.V., (1996) Curr. Opin. Genet. Dev. 6: 610

    Article  CAS  Google Scholar 

  41. Ambudkar S.V., Dey S., Hrycyna C.A., Ramachandra M., Pastan I., Gottesman M.M., (1999) Annu. Rev. Pharmacol. Toxicol. 39: 361

    Article  CAS  Google Scholar 

  42. Delph, Y. P-glycoprotein: A tangled web waiting to be unraveled. http://www.aidsinfonyc.org/tag/science/pgp.html

  43. Huberty, C. J., Applied discriminant analysis. ed.; John Wiley & Sons: New York, 1994

  44. Izrailev S., Agrafiotis D.K., (2004) J. Mol. Graph. Mod. 22: 275

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Simon Thomas and Dr Graham Searle for implementation of the Matlab Neural Network and Genetic Algorithm-wrapped agents respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Leahy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartmell, J., Enoch, S., Krstajic, D. et al. Automated QSPR through Competitive Workflow. J Comput Aided Mol Des 19, 821–833 (2005). https://doi.org/10.1007/s10822-005-9029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-005-9029-8

Keywords

Navigation