Skip to main content
Log in

Direct comparison between experiments and computations at the atomic length scale: a case study of graphene

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

This paper discusses a set of recent experimental results in which the mechanical properties of monolayer graphene molecules were determined. The results included the second-order elastic modulus which determines the linear elastic behavior and an estimate of the third-order elastic modulus which determines the non-linear elastic behavior. In addition, the distribution of the breaking force strongly suggested the graphene to be free of defects, so the measured breaking strength of the films represented the intrinsic breaking strength of the underlying carbon covalent bonds. The results of recent simulation efforts to predict the mechanical properties of graphene are discussed in light of the experiments. Finally, this paper contains a discussion of some of the extra challenges associated with experimental validation of multi-scale models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C., Wei X.D., Kysar J.W., Hone J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887): 385–388

    Article  PubMed  ADS  CAS  Google Scholar 

  2. Pablo J.J., Curtin W.A.: Multiscale modeling in advanced materials research: challenges, novel methods, and emerging applications. MRS Bull. 32, 905–909 (2007)

    Google Scholar 

  3. Becker R.: Developments and trends in continuum plasticity. J. Comput-Aided Mater. Des. 9(2), 145–163 (2002)

    Article  ADS  CAS  Google Scholar 

  4. Chandler E., Moriarty J., de la Rubia T.D., Couch R.: LLNL’s dynamics of metals program: multi-scale modeling of plasticity and dynamic failure. Abstr. Pap. Am. Chem. Soc 222, U13–U13 (2001)

    Google Scholar 

  5. Buehler M.J., Hartmaier A., Gao H.: Hierarchical multi-scale modelling of plasticity of submicron thin metal films. Model. Simul. Mater. Sci. Eng. 12(4), S391–S413 (2004)

    Article  ADS  Google Scholar 

  6. Clayton J.D., McDowell D.L.: Homogenized finite elastoplasticity and damage: theory and computations. Mech. Mater. 36(9), 799–824 (2004)

    Google Scholar 

  7. Hao S., Liu W.K., Moran B., Vernerey F., Olson G.B.: Multi-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput. Methods Appl. Mech. Eng. 193(17–20), 1865–1908 (2004)

    Article  MATH  Google Scholar 

  8. Khan S.M.A., Zbib H.M., Hughes D.A.: Modeling planar dislocation boundaries using multi-scale dislocation dynamics plasticity. Int. J. Plast. 20(6), 1059–1092 (2004)

    Article  MATH  Google Scholar 

  9. Belak J.: Multi-scale applications to high strain-rate dynamic fracture. J. Comput. Aided Mater. Des. 9(2), 165–172 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Curtin W.A., Miller R.E.: coupling in computational materials science. Model. Simul. Mater. Sci. Eng. 11(3), R33–R68 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Zbib H.M., de la Rubia T.D. : A multiscale model of plasticity. Int. J. Plast. 18(9), 1133–1163 (2002)

    Article  MATH  Google Scholar 

  12. Hartley C.S.: Multi-scale modeling of dislocation processes. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 319, 133–138 (2001)

    Google Scholar 

  13. Stainier L., Cuitino A.M., Ortiz M.: A micromechanical model of hardening, rate sensitivity and thermal softening in bcc single crystals. J. Mech. Phys. Solids 50(7), 1511–1545 (2002)

    Article  MATH  ADS  CAS  Google Scholar 

  14. Stainier L., Cuitino A.M., Ortiz M.: Multiscale modelling of hardening in BCC crystal plasticity. J. Phys. Iv 105, 157–164 (2003)

    Article  Google Scholar 

  15. Cuitino A.M., Stainier L., Wang G.F., Strachan A., Cagin T., Goddard W.A., Ortiz M.: A multiscale approach for modeling crystalline solids. J. Comput. Aided Mater. Des. 8(2–3), 127–149 (2002)

    ADS  Google Scholar 

  16. Cuitino A.M., Ortiz M.: Computational modeling of single-crystals. Model. Simul. Mater. Sci. Eng. 1(3), 225–263 (1993)

    Article  ADS  Google Scholar 

  17. Horstemeyer M.F., Baskes M.I., Prantil V.C., Philliber J., Vonderheide S.: A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory. Model. Simul. Mater. Sci. Eng. 11(3), 265–286 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Baskes M.I.: The status role of modeling and simulation in materials science and engineering. Curr. Opin. Solid State Mater. Sci. 4(3), 273–277 (1999)

    Article  CAS  Google Scholar 

  19. Horstemeyer M.F., Baskes M.I.: Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. J. Eng. Mater. Technol. Trans. ASME 121(2), 114–119 (1999)

    Article  Google Scholar 

  20. Campbell G.H., Foiles S.M., Huang H.C., Hughes D.A., King W.E., Lassila D.H., Nikkel D.J., de la Rubia T.D. , Shu J.Y., Smyshlyaev V.P.: Multi-scale modeling of polycrystal plasticity: a workshop report. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 251(1–2), 1–22 (1998)

    Google Scholar 

  21. Hansen N., Hughes D.A.: Analysis of large dislocation populations in deformed metals. Phys. Status Solidi A Appl. Res. 149(1), 155–172 (1995)

    Article  CAS  ADS  Google Scholar 

  22. Horstemeyer M.F., Baskes M.I., Godfrey V., Hughes D.A.: A large deformation atomistic study examining crystal orientation effects on the stress–strain relationship. Int. J. Plast. 18(2), 203–229 (2002)

    Article  MATH  CAS  Google Scholar 

  23. Godfrey A., Hughes D.A.: Physical parameters linking deformation microstructures over a wide range of length scale. Scr. Mater. 51(8), 831–836 (2004)

    Article  CAS  Google Scholar 

  24. de la Rubia T.D. , Bulatov V.V.: Materials research by means of multiscale computer simulation. Mater. Res. Soc. Bull. 26(3), 169–175 (2001)

    Google Scholar 

  25. Soderlind P., Moriarty J.A.: First-principles theory of Ta up to 10 Mbar pressure: structural and mechanical properties. Phys. Rev. B 57(17), 10340–10350 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Ogata S., Li J., Hirosaki N., Shibutani Y., Yip S.: Ideal shear strain of metals and ceramics. Phys. Rev. B. 70(10), 104104 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Ogata S., Li J., Yip S.: Ideal pure shear strength of aluminum and copper. Science 298(5594), 807–811 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  28. Shibutani Y., Krasko G.L., Sob M., Yip S.: Atomic-level description of material strength of alpha-Fe. Mater. Sci. Res. Int. 5(4), 225–233 (1999)

    CAS  Google Scholar 

  29. Widom M., Moriarty J.A.: First-principles interatomic potentials for transition-metal aluminides. II. Application to Al-Co and Al-Ni phase diagrams. 58(14), 8967–8979 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Moriarty J.A., Belak J.F., Rudd R.E., Soderlind P., Streitz F.H., Yang L.H.: Quantum-based atomistic simulation of materials properties in transition metals. J. Phys. Condens. Matter 14(11), 2825–2857 (2002)

    Article  ADS  CAS  Google Scholar 

  31. Moriarty J.A., Vitek V., Bulatov V.V., Yip S.: Atomistic simulations of dislocations and defects. J. Comput. Aided Mater. Des. 9(2), 99–132 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Yang L.H., Soderlind P., Moriarty J.A.: Atomistic simulation of pressure-dependent screw dislocation properties in bcc tantalum. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 309, 102–107 (2001)

    Google Scholar 

  33. Schiotz J., Jacobsen K.W.: A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357–1359 (2003)

    Article  PubMed  ADS  CAS  Google Scholar 

  34. Bulatov V.V.: Current developments and trends in dislocation dynamics. J. Comput. Aided Mater. Des. 9(2), 133–144 (2002)

    Article  ADS  CAS  MathSciNet  Google Scholar 

  35. Hiratani M., Bulatov V.V.: Solid-solution hardening by point-like obstacles of different kinds. Philos. Mag. Lett. 84(7), 461–470 (2004)

    Article  ADS  CAS  Google Scholar 

  36. Cai W., Bulatov V.V.: Mobility laws in dislocation dynamics simulations. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 387–389, 277–281 (2004)

    Google Scholar 

  37. Liu F., Ming P., Li J.: Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007)

    Article  ADS  CAS  Google Scholar 

  38. Arsenlis A., Wirth B.D., Rhee M.: Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philos. Mag. 84(34), 3617–3635 (2004)

    Article  ADS  CAS  Google Scholar 

  39. Arsenlis A., Parks D.M., Becker R., Bulatov V.V.: On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. J. Mech. Phys. Solids 52(6), 1213–1246 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Arsenlis A., Tang M.J.: Simulations on the growth of dislocation density during Stage 0 deformation in BCC metals. Model. Simul. Mater. Sci. Eng. 11(2), 251–264 (2003)

    Article  ADS  Google Scholar 

  41. Arsenlis A., Parks D.M.: Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids 50(9), 1979–2009 (2002)

    Article  MATH  ADS  CAS  Google Scholar 

  42. Kysar J.W.: Energy dissipation mechanisms in ductile fracture. J. Mech. Phys. Solids 51(5), 795–824 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Larson B.C., El-Azab A., Yang W.G., Tischler J.Z., Liu W.J., Ice G.E.: Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 87(8–9), 1327–1347 (2007)

    Article  ADS  CAS  Google Scholar 

  44. Uchic M.D., Dimiduk D.M., Florando J.N., Nix W.D.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986–989 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  45. Nicks L.J., Nehl F.H., Chambers M.F.: Recovering flake graphite from steelmaking kish. J. Mater. 47(6), 48–51 (1995)

    CAS  Google Scholar 

  46. Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  47. Komaragiri U., Begley M.R.: The mechanical response of freestanding circular elastic films under point and pressure loads. J. Appl. Mech. Trans. ASME 72(2), 203–212 (2005)

    Article  MATH  Google Scholar 

  48. Schwerin E.: Über Spannungen und Formänderungen kreisringförmiger Membranen. Z. Tech. Phys. 10(12), 651–659 (1929)

    Google Scholar 

  49. Barber A.H., Andrews R., Schadler L.S., Wagner H.D.: On the tensile strength distribution of multiwalled carbon nanotubes. Appl. Phys. Lett. 87, 203106 (2005)

    Article  ADS  CAS  Google Scholar 

  50. Stolyarova E., Rim K.T., Ryu S.M., Maultzsch J., Kim P., Brus L.E., Heinz T.F., Hybertsen M.S., Flynn G.W.: High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci. USA 104(22), 9209–9212 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  51. Coulson C.A., Santos E, Senent S., Leal M., Herraez M.A.: Formation energy of vacancies in graphite crystals. Proc. R. Soc. Lond. A Math. Phys. Sci. 274, 461–479 (1963)

    Article  ADS  CAS  Google Scholar 

  52. El-Barbary, A.A., Telling, R.H., Ewels, C.P., Heggie, M.I. and Briddon,P.R.: Structure and energetics of the vacancy in graphite. Phys. Rev. B. 68(14) (2003). Article Number 144107

  53. Grenall A.: Direct observation of dislocations in graphite. Nature 182(4633), 448–450 (1958)

    Article  ADS  CAS  Google Scholar 

  54. Williamson G.K.: Electron microscope studies of dislocation structures in graphite. Proc. R. Soc. Lond. A Math. Phys. Sci. 257(1291), 457–& (1960)

  55. Yakobson B.I., Brabec C.J., Bernholc J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76(14), 2511–2514 (1996)

    Article  PubMed  ADS  CAS  Google Scholar 

  56. Bhatia N.M., Nachbar W.: Finite indentation of an elastic membrane by a spherical indenter. Int. J. Nonlinear Mech. 3(3), 307–324 (1968)

    Article  MATH  ADS  Google Scholar 

  57. Brugger K.: Thermodynamic definition of highter order elastic coefficients. Phys. Rev. A Gen. Phys. 133(6A), A1611–A1612 (1964)

    ADS  Google Scholar 

  58. Brugger K.: Pure modes for elastic waves in crystals. Journal of Applied Physics 36(3), 759–768 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  59. Brugger K.: Determination of 3rd-order elastic coefficients in crystals. J. Appl. Phys. 36(3), 768–773 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  60. Lubarda V.A.: Apparent elastic constants of cubic crystals and their pressure derivatives. Int. J. Non-Linear Mech. 34(1), 5–11 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Huang Y., Wu J., Hwang K.C.: Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006)

    Article  ADS  CAS  Google Scholar 

  62. Pantano A., Parks D.M., Boyce M.C.: Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 52, 789–821 (2004)

    Article  MATH  ADS  CAS  Google Scholar 

  63. Carter E.A.: Challenges in modeling materials properties without experimental input. Science 321(5890), 800–803 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  64. Khare R., Mielke S.L., Paci J.T., Zhang S., Ballarini R., Schatz G., Belytschko T.: Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys. Rev. B 75, 075412 (2007)

    Article  ADS  CAS  Google Scholar 

  65. Stone A.J.: Intermolecular potentials. Science 321, 787–789 (2008)

    Article  PubMed  ADS  CAS  Google Scholar 

  66. Porter L.J., Li J., Yip S.: Atomistic modeling of finite-temperature properties of b-SiC. I. Lattice vibration, heat capacity and thermal expansion. J. Nucl. Mater. 246, 53–59 (1997)

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Kysar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kysar, J.W. Direct comparison between experiments and computations at the atomic length scale: a case study of graphene. Sci Model Simul 15, 143–157 (2008). https://doi.org/10.1007/s10820-008-9105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9105-1

Keywords

Navigation