Skip to main content
Log in

Characteristic quantities and dimensional analysis

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

Phenomena in the physical sciences are described with quantities that have a numerical value and a dimension, i.e., a physical unit. Dimensional analysis is a powerful aspect of modeling and simulation. Characteristic quantities formed by a combination of model parameters can give new insights without detailed analytic or numerical calculations. Dimensional requirements lead to Buckingham’s Π theorem—a general mathematical structure of all models in physics. These aspects are illustrated with many examples of modeling, e.g., an elastic beam on supports, wave propagation on a liquid surface, the Lennard-Jones potential for the interaction between atoms, the Lindemann melting rule, and saturation phenomena in electrical and thermal conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashcroft N.W., Mermin N.D.: Solid State Physics. Holt, Rinehart and Winston, Austin (1976)

    Google Scholar 

  2. Barenblatt G.I.: Dimensional Analysis. Gordon and Breach, New York (1987)

    Google Scholar 

  3. Buckingham E.: On physically similar systems: illustrations of the use of dimensional equations. Phys. Rev. 4, 345–376 (1914)

    Article  ADS  Google Scholar 

  4. Dyer, K.M., Pettitt, B.M., Stell, G.: Systematic investigation of theories of transport in the Lennard-Jones fluid. J. Chem. Phys. 126, 034502/1–034502/9 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Fisk Z., Webb G.W.: Saturation of the high-temperature normal-state electrical resistivity of superconductors. Phys. Rev. Lett. 36, 1084–1086 (1976)

    Article  ADS  CAS  Google Scholar 

  6. Gilman, Y., Allen, P.B., Tahir-Kheli, J., Goddard, W.A., III.: Numerical resistivity calculations for disordered three-dimensional metal models using tight-binding Hamiltonians. Phys. Rev. B 70, 224201/1–224201/3 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Gilvarry J.J.: The Lindemann and Grüneisen laws. Phys. Rev. 102, 308–316 (1956)

    Article  ADS  CAS  Google Scholar 

  8. Goren S.L.: The instability of an annular thread of fluid. J. Fluid Mech. 12, 309–319 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Granger R.A.: Fluid Mechanics. Dover, New York (1985)

    Google Scholar 

  10. Grimvall G.: Transport properties of metals and alloys. Physica 127B, 165–169 (1984)

    Google Scholar 

  11. Grimvall, G.: Thermophysical Properties of Materials. Enlarged and revised edition. North-Holland (1999)

  12. Gunnarsson O., Calandra M., Han J.E.: Colloquium: saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003)

    Article  ADS  Google Scholar 

  13. Jones J.E.: On the determination of molecular fields—II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106, 463–477 (1924)

    Article  ADS  CAS  Google Scholar 

  14. Kihara T., Koba S.: Crystal structures and intermolecular forces of rare gases. J. Phys. Soc. Jpn. 7, 348–354 (1952)

    Article  ADS  CAS  Google Scholar 

  15. Kittel C.: Introduction to Solid State Physics, 8th edn. Wiley, New York (2005)

    Google Scholar 

  16. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Elsevier (1987)

  17. Lighthill J.: Waves in Fluids. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

  18. Lindemann F.A.: Molecular frequencies. Physik. Zeits. 11, 609–612 (1910)

    CAS  Google Scholar 

  19. Mooij J.H.: Electrical conduction in concentrated disordered transition metal alloys. Phys. Stat. Solidi A 17, 521–530 (1973)

    Article  ADS  CAS  Google Scholar 

  20. Slack G.A.: The thermal conduction of a non-metallic crystal. In: Ehrenreich, H., Seitz, F., Turnbull, D.(eds) Solid State Physics, vol. 34, pp. 1–71. Academic Press, New York (1979)

    Google Scholar 

  21. Stillinger F.H.: Lattice sums and their phase diagram implications for the classical Lennard-Jones model. J. Chem. Phys. 115, 5208–5212 (2001)

    Article  ADS  CAS  Google Scholar 

  22. Szirtes T.: Applied Dimensional Analysis and Modeling. McGraw-Hill, New York (1998)

    MATH  Google Scholar 

  23. Taylor E.S.: Dimensional Analysis for Engineers. Clarendon Press, Oxford (1974)

    Google Scholar 

  24. Thompson, D.W. In: Bonner, J.T. (ed.) On Growth and Form, Abridged edn. Cambridge University Press, Cambridge (1961)

  25. Timoshenko S.: Strength of Materials. Part II. Advanced Theory and Problems. McMillan, New York (1930)

    Google Scholar 

  26. Timoshenko S.: Strength of Materials. Part I. Elementary Theory and Problems. McMillan, New York (1930)

    Google Scholar 

  27. Wiesmann H., Gurvitch M., Lutz H., Ghosh A., Schwarz B., Strongin M., Allen P. B., Halley J.W.: Simple model for characterizing the electrical resistivity in A-15 superconductors. Phys. Rev. Lett. 38, 782–785 (1977)

    Article  ADS  CAS  Google Scholar 

  28. Wolf G.H., Jeanloz R.: Lindemann melting law: anharmonic correction and test of its validity for minerals. J. Geophys. Res. 89, 7821–7835 (1984)

    Article  ADS  CAS  Google Scholar 

  29. Zeller R.C., Pohl R.O.: Thermal conductivity and specific heat of non-crystalline solids. Phys. Rev. B 4, 2029–2041 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Göran Grimvall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimvall, G. Characteristic quantities and dimensional analysis. Sci Model Simul 15, 21–39 (2008). https://doi.org/10.1007/s10820-008-9102-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9102-4

Keywords

Navigation