Skip to main content
Log in

Differential formation of allophane and imogolite: experimental and molecular orbital study

  • Original Paper
  • Published:
Journal of Computer-Aided Materials Design

Abstract

Allophane and imogolite are naturally occurring aluminum silicate soil constituents with nano-ball and nano-tube morphology. Wall of the both materials is composed of Al(OH)3 sheet with orthosilicic acid attached to it. Synthesis of allophane and imogolite can be controlled by addition of alkali and alkaline-earth metal ions. The main reaction product without or with small amounts addition of the metal ions is imogolite, while allophane forms when the metal ions were much added. The effect of metal ions on facilitating allophane formation and inhibition of imogolite formation were greater in the following order of Na, K < Ca, Mg. These metal ions affect the degree of dissociation of Si–OH group of orthosilicic acid, which may causes differential formation of allophane and imogolite. Structure optimization of the proto-imogolite model, precursor of allophane and imogolite, showed that when the Si–OH was undissociated, the shape of proto-imogolite model was transformed to asymmetrical in molecular configuration. This caused curling of the proto-imogolite model, which lead to formation of imogolite tube. On the other hand, when the Si–OH was dissociated, the shape of the proto-imogolite model was transformed to symmetrical configuration. This model curved to make a hollow sphere with placing the orthosilicic acid inside the sphere (allophane). Both of the experimental and molecular orbital calculation results proved that the dissociation of the Si–OH has an important role during the differential formation of allophane and imogolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. (1986) C 60: Buckminsterfullerene. Nature 318:162–163

    Article  Google Scholar 

  2. Iijima S. (1991) Helical micro-tubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Chopra N.G., Luyken R.J., Cherrey K., Crespi V.H., Cohen M.L., Louie S.G., Zettl A. (1995) Boron nitride nanotubes. Science 269: 966–967

    Article  CAS  Google Scholar 

  4. Tenne R. (2002) Inorganic nanotubes and fullerene-like materials. Chem. Eur. J. 8: 5296–5304

    Article  CAS  Google Scholar 

  5. Nakamura H., Matsui Y. (1995) Silica gel nanotubes obtained by the sol-gel method. J. Am. Chem. Soc. 117: 2651–2652

    Article  CAS  Google Scholar 

  6. Pu L., Bao X., Zou J., Feng D. (2001) Individual alumina nanotubes. Angew. Chem. Int. Ed. 113:1538–1541

    Article  Google Scholar 

  7. Yoshinaga N., Aomine S. (1962) Imogolite in some Ando soils. Soil Sci. Plant Nutr. 8:22–29

    Google Scholar 

  8. Henmi T., Wada K. (1976) Morphology and composition of allophane. Am. Miner. 61: 379–390

    CAS  Google Scholar 

  9. Cradwick P.D.G., Farmer V.C., Russell J.D., Masson C.R., Wada K., Yoshinaga N. (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nat. Phys. Sci. 240: 187–189

    Article  CAS  Google Scholar 

  10. Parfitt R.L., Henmi T. (1980) Structure of some allophane from New Zealand. Clays Clay Miner. 28: 285–294

    Article  CAS  Google Scholar 

  11. Wada S., Wada K. (1977) Density and structure of allophane. Clay Miner. 12: 289–298

    Article  CAS  Google Scholar 

  12. Shimizu H., Watanabe T., Henmi T., Masuda A., Saito A. (1988) Study on allophane and imogolite by high-resolution solid state 29Si- and 27Al-NMR and ESR. Geochem. J. 22: 23–31

    CAS  Google Scholar 

  13. Abidin, Z., Matsue, N., Henmi, T.: Validity of proposed model for the chemical structure of allophane with nano-ball morphology. Proceeding of the 13th International Clay Conference Tokyo (2005) Japan. Clay Sci. 12(Suppl. 2), 267–269 (2006).

  14. Huang P.M. (1991) Ionic factors affecting the formation of short-range ordered aluminosilicates. Soil Sci. Soc. Am. J. 55: 1172–1180

    Article  CAS  Google Scholar 

  15. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr. J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., Pople, J.A.: Gaussian 03, revision C.01 Inc. Wallingford, CT (2004)

  16. Wada S.I., Eto A., Wada K. (1979) Synthetic allophane and imogolite. J. Soil Sci. 30: 347–355

    Article  CAS  Google Scholar 

  17. Farmer V.C., Fraser A.R. (1979) Synthetic imogolite, a tubular hydroxyaluminium silicate. In: Mortland M.M., Farmer V.C. (eds). International Clay Conference, Oxford, 1978. Elsevier, Amsterdam, pp. 547–553

    Google Scholar 

  18. Inoue K., Huang P.M. (1984) Influence of citric acid on the natural formation of imogolite. Nature 308: 58–60

    Article  CAS  Google Scholar 

  19. Henmi, T., Huang, P.M.: Effect of phosphate anion on the formation of imogolite. In: Schultz, L.G, Van Olphen H., Mumpton, F.A. (eds.) Proceedings of the 8th International Clay Conference, Denver (1985). The Clay Minerals Society, Bloomington, Indiana, pp. 231–236 (1987)

  20. Saalfeld H., Wedde M. (1974) Refinement of the crystal structure of gibbsite, (AlOH)3. Z. Krystallogr. 139: 129–135

    Article  CAS  Google Scholar 

  21. Xiao Y., Lasaga A.C. (1996) Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH catalysis. Geochim. Cosmochim. Acta. 60: 2283–2295

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruo Henmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abidin, Z., Matsue, N. & Henmi, T. Differential formation of allophane and imogolite: experimental and molecular orbital study. J Computer-Aided Mater Des 14, 5–18 (2007). https://doi.org/10.1007/s10820-006-9022-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-006-9022-0

Keywords

Navigation