Skip to main content

Advertisement

Log in

Compression and digestion as agents of vertebral deformation in Sciaenidae, Merlucidae and Gadidae remains: an experimental study to interpret archaeological assemblages

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Fish taphonomy from archaeological sites provides considerable useful information about human behaviours and environmental contexts as potential food remains or as natural occurrences. This article focuses on mechanical deformations of fish vertebrae and the potential information about predation, diachrony in the deposition of the remains, and time-averaging and reworking processes these provide. Experimental work using uniaxial compression on dry and water-soaked vertebrae from modern skeletons [Meagre (Argyrosomus regius, Asso 1801), European hake (Merluccius merluccius, L. 1758) and Pouting (Trisopterus luscus, L. 1758)] compared to modern digested fish vertebrae from a predator of extreme taphonomic modification (European otter, Lutra lutra) allowed us to assess key features to identify different processes and site formation agents. Our results are also compared with experimental assemblages modified by water and dry abiotic abrasion. These provide a baseline to understand the nature of the agents causing modifications to archaeological vertebrae from the Middle Holocene Argentinian sites of El Americano II and Barrio Las Dunas and the Magdalenian site of Santa Catalina (Basque Country, Spain). The experimental frame of reference allowed us to identify dry compression on Barrio Las Dunas and Santa Catalina assemblages and wet compression on El Americano II and Santa Catalina sites, improving our interpretation of the formation of those archaeological deposits and their fish assemblages. These data allow one to explore with a higher degree of confidence than has been hitherto possible how humans obtained, processed, and discarded fish in former times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data underlying this study are within the paper. Also, experimental specimens are available at the Laboratory of Experimental Taphonomy, Museo Nacional de Ciencias Naturales, Madrid, Spain.

Code availability (software application or custom code)

Not applicable

References

  • Andrews, P. (1990). Owls, caves and fossils. University of Chicago Press.

  • Angielczyk, K. D., & Sheets, H. D. (2007). Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology, 33(1), 125–148.

    Article  Google Scholar 

  • Arbour, V. M., & Currie, P. J. (2012). Analyzing taphonomic deformation of Ankylosaur skulls using retrodeformation and finite element analysis. PLoS ONE, 7(6), e39323. https://doi.org/10.1371/journal.pone.0039323.

    Article  Google Scholar 

  • Bartosiewicz, L. (2013). Pathological lesions in fish remains. In L. Bartosiewicz & E. Gal (Eds.), Shuffling nags, lame ducks. The archaeology of animal disease (pp. 239–243). Oxbow Books.

  • Bayón, C., Frontini, R., & Vecchi, R. (2012). Middle Holocene settlements in coastal dunes from southwest of Buenos Aires province, Argentina. Quaternary International, 256, 54–61.

    Article  Google Scholar 

  • Boyd, A., & Motani, R. (2008). Three-dimensional re-evaluation of the deformation removal technique based on “jigsaw puzzling”. Palaeontología Electrónica, 11(2) http://palaeo-electronica.org/2008_2/131/index.html.

  • Butler, V. L., & Chatters, J. C. (1994). The role of bone density in structuring prehistoric salmon bone assemblages. Journal of Archaeological Science, 21(3), 413–424.

    Article  Google Scholar 

  • Butler, V. L., & Schroeder, R. A. (1998). Do digestive processes leave diagnostic traces on fish bones? Journal of Archaeological Science, 25(10), 957–971.

    Article  Google Scholar 

  • Cabrera, A., Yepes, Y. J. (1960). Mamíferos sudamericanos. TII EDIAR, Buenos Aires.

  • Campbell, M. (2005). The taphonomy of fish bone from archaeological sites in East Otago, New Zealand. Archaeofauna., 14, 129–137.

    Google Scholar 

  • Casteel, R. W. (1976). Fish remains in archaeology and paleoenvironmental studies. Academic Press.

  • Christiansen, P., & Wroe, S. (2007). Bite forces and evolutionary adaptations to feeding ecology in carnivores. Ecology, 88(2), 347–358.

    Article  Google Scholar 

  • Colley, S. (1990). The analysis and interpretation of archaeological fish remains. Archaeological Method and Theory, 2, 207–253.

    Google Scholar 

  • Crandall, B. D., & Stahl, P. W. (1995). Human digestive effects on a micromammalian skeleton. Journal of Archaeolical Science, 22(6), 789–797.

    Article  Google Scholar 

  • Fernández-Jalvo, Y., & Andrews, P. (2016). Atlas of taphonomic identifications. 1001+ Images of Fossil and Recent Mammal Bone Modification. Springer.

  • Fernández-Jalvo, Y., & Marín Monfort, M. D. (2008). Experimental taphonomy in museums: Preparation protocols for skeletons and fossil vertebrates under the scanning electron microscopy. Geobios, 41(1), 157–181.

    Article  Google Scholar 

  • Fernandez-Jalvo, Y., Scott, L., & Andrews, P. (2016). Taphonomy in palaeoecological interpretations. Quaternary Science Review, 30(11-12), 1296–1302.

  • Fernández-López, S. R. (1998). Tafonomía y fosilización. In B. Meléndez (Ed.), Tratado de Paleontología, Vol I (pp. 51–107). Consejo Superior de Investigaciones Científicas.

  • Frontini, R., & Bayón, C. (2017). Use of marine resources (fauna and tool stones) in the southwest of Buenos Aires Province (Argentina) during the Middle and Late Holocene. In M. Mondini, S. S. Muñoz, & P. M. Fernández (Eds.), Zooarchaeology in the neotropics: environmental diversity and human-animal interactions (pp. 25–46). Springer.

  • Frontini, R., Bayón, C., & Vecchi, R. (2021). Fish capture strategies in Atlantic littoral of Monte Hermoso district (Pampean Region Argentina) during Middle Holocene. In J. B. Belardi, D. Bozzuto, P. M. Fernández, E. Moreno, & G. Neme (Eds.), Ancient Hunting Strategies in Argentina (pp. 113–135). Springer “Latin American Studies” Serie.

  • Frontini, R., Fernández-Jalvo, Y., Pesquero Fernández, M. D., Morales Muñiz, A. & Roselló, E. (2018). Compresión de vértebras de pez. Aportes desde la tafonomía experimental. Libro de Resúmenes Congreso de Paleoambientes y Recursos bióticos del Pleistoceno Superior Cantábrico – PPRB 2018. Bilbao.

  • Frontini, R., Fernández-Jalvo, Y., Pesquero Fernández, M. D., Vecchi, R., & Bayón, C. (2019). Abrasion in archaeological fish bones from sand dunes. An experimental approach. Archaeological and Anthropological Science, 11(9), 4891–4907.

    Article  Google Scholar 

  • Gifford-Gonzalez, D. P., Damrosch, D. B., Damrosch, D. R., Pryor, J., & Thunen, R. L. (1985). The third dimension in site structure: an experiment in trampling and vertical dispersal. American Antiquity, 50(4), 803–818.

    Article  Google Scholar 

  • Gifford-González, D. P., Stewart, H. M., & Rybczynski, N. (1999). Human activities and site formation at modern lake margin foraging camps in Kenya. Journal of Anthropological Archaeology, 18(4), 397–440.

    Article  Google Scholar 

  • Guede, D., González, P., & Carilo, J. R. (2013). Biomecánica y Hueso: conceptos básicos y ensayos mecánicos clásicos. Revista de Osteoporosis y Metabolismo Mineral, 5(1), 43–50.

    Article  Google Scholar 

  • Guillaud, E., Beárez, P., Denys, C., & Raimond, S. (2014). Taphonomy of a fish accumulation by the European Otter (Lutra lutra) in central France. Journal of Taphonomy, 12(1), 69–83.

    Google Scholar 

  • Guillaud, E., Bearez, P., Denys, C., & Raimond, S. (2017). New data on fish diet and bone digestion of the Eurasian otter (Lutra lutra) (Mammalia: Mustelidae) in central France. European Zoological Journal, 84(1), 226–237.

    Article  Google Scholar 

  • Guillaud, E., Cornette, R., & Bearez, P. (2016). Is vertebral form a valid species-specific indicator for salmonids? The discrimination rate of trout and Atlantic salmon from archaeological to modern times. Journal of Archaeological Science, 65(1), 84–92.

    Article  Google Scholar 

  • Harland, J. F., van Neer, W. (2016). Weird fish: Defining a role for fish pathology. In L. Bartosiewicz & E. Gál (Eds.), Care or Neglect? Evidence of Animal Disease in Archaeology. Proceedings of the 6th meeting of the Animal Palaeopathology Working Group of the International Council for Archaeozoology (ICAZ), Budapest, Hungary, (pp. 256-275), Oxford: Oxbow Books.

  • Hernández, A. & García, L. (2020). Informe del análisis estadístico en compresión de vertebras de peces. MS. Departamento de Matemática. Bahía Blanca: Universidad Nacional del Sur.

  • Jones, A. K. (1984). Some effects of the mammalian digestive system on fish bones. In N. Desse-Berset (Ed.), 2nd Fish Osteoarchaeology Meeting. Notes et Monographies Techniques, 16, 61-65. CNRS. Centre de recherches archéologiques.

  • Jones, A.K.G. (1999). Walking the cod: An investigation into the relative robustness of cod, Gadus morhua, skeletal elements. Internet Archaeology, 7. https://doi.org/10.11141/ia.7.10.

  • Kirchner, H. (2006). Ductility and brittleness of bone. International Journal of Fracture, 139(3-4), 509–516.

    Article  Google Scholar 

  • Leeper, B. J. (2015). Evaluation of current methods of soft tissue removal from bone. PhD Dissertation. Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences. University of Pittsburgh.

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge University Press.

  • Marín-Monfort, M. D., Pesquero, M. D., & Fernández-Jalvo, Y. (2014). Compressive marks from gravel substrate on vertebrate remains: A preliminary experimental study. Quaternary International, 330, 118–125.

    Article  Google Scholar 

  • Morales, A., Llorente-Rodríguez, L. (2018). Ichthyoarchaeology. In: Encyclopaedia of Global Archaeology. Springer. http://refworks.springer.com/archaeology.

  • Morales Muñiz, A., Roselló Izquierdo, E., Fernández-Jalvo, Y., Pesquero Fernández, M.D., Frontini, R. (2019). Archaeological fish vertebral deformation: An experimental approach. ICAZ 19th Fish Remains Working Group Meeting. Portland.

  • Nicholson, R. A. (1992a). Bone survival: The effects of sedimentary abrasion and trampling on fresh and cooked bone. International Journal of Osteoarchaeology, 2(1), 79–90.

    Article  Google Scholar 

  • Nicholson, R. A. (1992b). An assessment of the value of bone density measurements to archaeoichthyological studies. International Journal of Osteoarchaeology, 2(2), 139–154.

    Article  Google Scholar 

  • Nicholson, R. A. (1993). An investigation into the effects on fish bone on passage through the human gut: some experiments and comparisons with archaeological material. Circaea, 10(1), 38–51.

    Google Scholar 

  • Nicholson, R. A. (1996). Fish bone diagenesis in different soils. Archaeofauna, 5, 79–91.

    Google Scholar 

  • Nielsen, A. E. (1991). Trampling the archaeological record: An experimental study. American Antiquity, 56(3), 483–503.

    Article  Google Scholar 

  • Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: trampling versus butchery. Journal of Archaelogical Science, 15, 535–553.

  • Panagiotis, B. (2015). Factors that can lead to the development of skeletal deformities in fishes: a review. Journal of Fisheries Sciences, 9(3), 17–23.

    Google Scholar 

  • Roselló-Izquierdo, E., Berganza-Gochi, E., Nores-Quesada, C., & Morales-Muñiz, A. (2017). Santa Catalina (Lequeitio, Basque Country): An ecological and cultural insight into the nature of prehistoric fishing in Cantabrian Spain. Journal of Archaeological Science Reports, 6, 645–653.

    Article  Google Scholar 

  • Scartascini, F., & Borella, F. (2017). Peces y lobos en Punta Odriozola y Arroyo Verde. Evaluando la importancia de los recursos marinos en la costa oeste del golfo San Matías. Arqueología, 23(3), 107–127.

    Google Scholar 

  • Shipman, P. (1981). Life history of a fossil: An introduction to taphonomy and paleoecology. Harvard University Press.

  • Stewart, K., & Gifford-González, D. G. G. (1994). An etnoarchaeological contribution to identifying hominid fish processing sites. Journal of Archaeological Science, 21(2), 237–248.

    Article  Google Scholar 

  • Summers, A. P., & Long, J. H. (2005). Skin and bones, sinew, and gristle: The mechanical behavior of fish skeletal tissues. Fish Physiology, 23, 141–177.

    Article  Google Scholar 

  • Svoboda, A., & Gómez-Otero, J. (2015). Peces marinos, peces fluviales: explotación diferencial por grupos cazadores-recolectores del noreste de Chubut (Patagonia central, Argentina). Archaeofauna., 24, 87–101.

    Google Scholar 

  • Svoboda, A., & Moreno, E. (2018). Peces y coipos: zooarqueología del sitio Valle Hermoso 4 (lago Colhué Huapi, Chubut). Revista del Museo de Antropología, 11(1), 85–98.

    Article  Google Scholar 

  • Wheeler, A., & Jones, A. K. (1989). Fishes. Cambridge University Press.

  • Willis, L. M., & Boehm, A. R. (2014). Fish bones, cut marks, and burial: Implications for taphonomy and faunal analysis. Journal of Archaeological Science, 45, 20–25.

    Article  Google Scholar 

  • Zangrando, A. F. (2009). Historia Evolutiva y Subsistencia de Cazadores-recolectores Marítimos de Tierra del Fuego. Sociedad Argentina de Antropología.

Download references

Funding

This work was supported by Spanish Ministerio de Economía y Competitividad [grants numbers HAR2014-55722-P, HAR2017-88325-P, granted to AMM and ER]. The experiments at the LET/LEA laboratory were covered by projects CGL-2016 79334-P (MINECO) and i-COOP2017B-20287 (CSIC) granted to YFJ and MINECO contract PTA2015-10834-I granted to M.D.Pesquero; RF work was supported by Agencia Nacional de Promoción Científica y Tecnológica [grant number PICT 2016 0368] and the Secretaría de Ciencia y Tecnología, Universidad Nacional del Sur [grant number PGI 22/I266]. The experiments were performed thanks to the Beca Externa Posdoctoral (CONICET) and Investiga Cultura, Ministerio de Cultura de la Nación Argentina, fellowships granted to RF.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; data curation; formal analysis; funding acquisition; investigation; methodology; writing-original draft; review; and editing: Romina Frontini, Yolanda Fernández-Jalvo, María Dolores Pesquero-Fernández

Resources; conceptualization; data curation; writing review, and editing: Eufrasia Roselló-Izquierdo, Arturo Morales-Muñiz, Christiane Denys; Émilie Guillaud

Corresponding author

Correspondence to Romina Frontini.

Ethics declarations

Ethics approval

All experiments were performed in accordance with the pertinent guidelines and regulations. The experiments were conducted following the approval and protocols implemented by the Museo Nacional de Ciencias Naturales (Madrid, Spain).

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frontini, R., Roselló-Izquierdo, E., Morales-Muñiz, A. et al. Compression and digestion as agents of vertebral deformation in Sciaenidae, Merlucidae and Gadidae remains: an experimental study to interpret archaeological assemblages. J Archaeol Method Theory 29, 480–507 (2022). https://doi.org/10.1007/s10816-021-09527-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-021-09527-5

Keywords

Navigation