Skip to main content
Log in

A Critical Review of Four Efforts to Resurrect MNI in Zooarchaeology

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Evaluation of zooarchaeology’s quantitative units known as NISP (number of identified specimens) and MNI (minimum number of individuals) during the last three decades of the twentieth century suggested neither provided ratio scale measures of taxonomic abundances. Many researchers at that time began to use NISP as often as MNI to measure taxonomic abundances. In part because of a desire to determine the composition of human diet more precisely, and in light of the fact that different taxa have different numbers of identifiable bones, four zooarchaeologists have, since 1990, used assemblages with known ANI (actual number of individuals) to evaluate whether NISP or MNI provides the most accurate measure of ANI. ANI data from ethnoarchaeological and historical contexts suggest taxonomic abundance data quantified as NISP or MNI are ordinal scale at best, something previously shown to be highly probable. Experimental data used to evaluate the accuracy of NISP and MNI as measures of ANI are either inappropriate or not designed to assess which quantitative unit produces the most accurate measure. A new quantitative unit proposed as an alternative to MNE (minimum number of [skeletal] elements)—the NDE (number of distinct elements)—is said to provide proportional abundances of taxa but demonstrably undercounts skeletal parts and fails to provide ratio scale abundance data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams, W. R. (1949). Faunal remains from the Angel Site. Master of Arts thesis. Bloomington: Indiana University.

  • Adams, B. J., & Konigsberg, L. W. (2008). How many people? Determining the number of individuals represented by commingled human remains. In B. J. Adams & J. E. Byrd (Eds.), Recovery, analysis, and identification of commingled human remains (pp. 241–255). Totowa: Humana Press.

    Google Scholar 

  • Allen, J., & Guy, J. B. M. (1984). Optimal estimations of individuals in archaeological faunal assemblages: how minimal is the MNI? Archaeology in Oceania, 19, 41–47.

    Google Scholar 

  • Allen, M. S., & Nagaoka, L. A. (2004). “In the footsteps of von Haast. . . the discoveries something grand”: the emergence of zooarchaeology in New Zealand. In L. Furey & S. Holdaway (Eds.), Change through time: 50 years of New Zealand archaeology (pp. 193–214). Auckland: New Zealand Archaeological Association Monograph 26.

  • Audouze, F., & Enloe, J. G. (1997). High resolution archaeology at Verberie: limits and interpretations. World Archaeology, 29, 195–207.

    Google Scholar 

  • Badgley, C. (1986). Counting individuals in mammalian fossil assemblages from fluvial environments. PALAIOS, 1, 328–338.

    Google Scholar 

  • Bailey, G. (2007). Time perspectives, palimpsests and the archaeology of time. Journal of Anthropological Archaeology, 26, 198–223.

    Google Scholar 

  • Bennington, J. B., & Aronson, M. F. J. (2012). Reconciling scale in paleontological and neontological data: dimensions of time, space, and taxonomy. In J. Louys (Ed.), Paleontology in ecology and conservation (pp. 39–67). Berlin: Springer-Verlag.

    Google Scholar 

  • Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic Press.

    Google Scholar 

  • Binford, L. R. (1981). Bones: ancient men and modern myths. Orlando: Academic Press.

    Google Scholar 

  • Binford, L. R. (1984). Faunal remains from Klasies River mouth. Orlando: Academic Press.

    Google Scholar 

  • Bobrowsky, P. T. (1982). An examination of Casteel’s MNI behavior analysis: a reductionist approach. Midcontinental Journal of Archaeology, 7, 173–184.

    Google Scholar 

  • Brain, C. K. (1969). The contribution of the Namib Desert Hottentots to an understanding of australopithecine bone accumulations. Scientific Papers of the Namib Desert Research Station, 39, 13–22.

    Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.

    Google Scholar 

  • Breitburg, E. (1991). Verification and reliability of NISP and MNI methods of quantifying taxonomic abundance: a view from historic site zooarchaeology. In J. R. Purdue, W. E. Klippel, & B. W. Styles (Eds.), Beamers, bobwhites, and blue-points: tributes to the career of Paul W. Parmalee (pp. 153–162). Springfield: Illinois State Museum Scientific Papers 23.

  • Bunn, H. T. (1982). Meat-eating and human evolution: atudies on the diet and subsistence patterns of Plio-Pleistocene hominids in east Africa. Doctoral dissertation. Berkeley: University of California.

  • Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20, 397–419.

    Google Scholar 

  • Carlson, C. C. (1999). History of zooarchaeology in New England. In M. A. Levine, K. E. Sassaman, & M. S. Nassaney (Eds.), The archaeological Northeast (pp. 171–181). Westport: Bergin & Garvey.

    Google Scholar 

  • Casteel, R. W. (1977a). Characterization of faunal assemblages and the minimum number of individuals determined from paired elements: continuing problems in archaeology. Journal of Archaeological Science, 4, 125–134.

    Google Scholar 

  • Casteel, R. W. (1977b). A consideration of the behaviour of the minimum number of individuals index: a problem in faunal characterization. OSSA, 3(4), 141–151.

    Google Scholar 

  • Chaplin, R. E. (1971). The study of animal bones from archaeological sites. London: Seminar Press.

    Google Scholar 

  • Clason, A. T. (1972). Some remarks on the use and presentation of archaeozoological data. Helenium, 12, 139–153.

    Google Scholar 

  • Crabtree, P. J. (2018). The value in studying large faunal collections using traditional zooarchaeological methods: a case study from Anglo-Saxon England. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 173–188). Cham: Springer.

    Google Scholar 

  • Dobney, K., & Rielly, K. (1988). A method for recording archaeological animal bones: the use of diagnostic zones. Circa, 5, 79–96.

    Google Scholar 

  • Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4, 47–59.

    Google Scholar 

  • Driver, J. C. (1992). Identification, classification and zooarchaeology. Circa, 9(1), 35–47.

    Google Scholar 

  • Dunnell, R. C., & Dancey, W. S. (1983). The siteless survey: a regional scale data collection strategy. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. 6, pp. 267–287). New York: Academic Press.

    Google Scholar 

  • Eck, G. G. (2007). The effects of collection strategy and effort on faunal recovery: a case study of the American and French collections from the Shungura Formation, Ethiopia. In R. Bobé, Z. Alemseged, & A. K. Behrensmeyer (Eds.), Hominin environments in the East African Pliocene: an assessment of the faunal evidence (pp. 183–215). Dordrecht: Springer.

    Google Scholar 

  • Enloe, J. G. (2003). Acquisition and processing of reindeer in the Paris basin. In S. Costamagno & V. Laroulandie (Eds.), Zooarchaeological insights into Magdalenian lifeways (pp. 23–31). Oxford: BAR International Series 1144.

    Google Scholar 

  • Enloe, J. G., & David, F. (1992). Food sharing in the Paleolithic: carcass refitting at Pincevent. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 296–315). Oxford: BAR International Series 578.

    Google Scholar 

  • Fieller, N. R. J., & Turner, A. (1982). Number estimation in vertebrate samples. Journal of Archaeological Science, 9, 49–62.

    Google Scholar 

  • Foley, R. (1981). Off-site archaeology: an alternative approach for the short-sited. In I. Hodder, G. Isaac, & N. Hammond (Eds.), Pattern of the past: studies in honour of David Clarke (pp. 157–183). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ford, J. A. (1962). A quantitative method for deriving cultural chronology. Technical Manual no. 1. Washington, DC: Pan American Union.

    Google Scholar 

  • Gautier, A. (1984). How do I count you, let me count the ways? Problems in archaeozoological quantification. In C. Grigson & J. Clutton-Brock (Eds.), Animals and archaeology 4: husbandry in Europe (pp. 237–251). Oxford: BAR International Series 227.

    Google Scholar 

  • Gifford, D. P. (1981). In M. B. Schiffer (Ed.), Taphonomy and paleoecology: a critical review of archaeology’s sister disciplines (Vol. 4, pp. 365–438). New York: Academic Press.

    Google Scholar 

  • Gifford-Gonzalez, D., & Hildebrandt, W. R. (2012). If mussels weighed a ton: problems with quantifying Santa Barbara Channel archaeofaunas. In M. A. Glassow & T. L. Joslin (Eds.), Exploring methods of faunal analysis: insights from California archaeology (pp. 97–107). Perspectives in California Archaeology Vol. 9. Los Angeles: Cotsen Institute of Archaeology, University of California.

  • Gilinsky, N. L., & Bennington, J. B. (1994). Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology, 20, 245–258.

    Google Scholar 

  • Giovas, C. M. (2009). The shell game: analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36, 1557–1564.

    Google Scholar 

  • Giovas, C. M. (2018). Impact of analytic protocols on archaeofish abundance, richness, and similarity: a Caribbean-Pacific crossover study. In C. M. Giovas & M. J. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 59–89). Cham, Switzerland: Springer.

    Google Scholar 

  • Gobalet, K. W. (2001). A critique of faunal analysis: inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.

    Google Scholar 

  • Grayson, D. K. (1973). On the methodology of faunal analysis. American Antiquity, 38, 432–439.

    Google Scholar 

  • Grayson, D. K. (1978). Minimum numbers and sample size in vertebrate faunal analysis. American Antiquity, 43, 53–65.

    Google Scholar 

  • Grayson, D. K. (1979). On the quantification of vertebrate archaeofaunas. In M. B. Schiffer (Ed.), Advances in archaeological method and theory (Vol. vol. 2, pp. 199–237). New York: Academic Press.

    Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology: topics in the analysis of archaeological faunas. Orlando, FL: Academic Press.

    Google Scholar 

  • Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal part representation in archaeological faunas. Journal of Taphonomy, 2, 27–42.

    Google Scholar 

  • Guthrie, R. D. (1984). Alaskan megabucks, megabulls, and megagrams: the issue of Pleistocene gigantism. In H. H. Genoways & M. R. Dawson (Eds.), Contributions in Quaternary vertebrate paleontology: a volume in memorial to John E. Guilday (pp. 482–510). Special Publication no. 8, Pittsburgh, PA: Carnegie Museum of Natural History.

  • Harris, M., Weisler, M., & Faulkner, P. (2015). A refined protocol for calculating MNI in archaeological molluscan shell assemblages: a Marshall Island case study. Journal of Archaeological Science, 57, 168–179.

    Google Scholar 

  • Hesse, B. (1982). Bias in the zooarchaeological record: suggestions for interpretation of bone counts in faunal samples from the Plains. In D. H. Ubelaker & H. J. Viola (Eds.), Plains Indian studies: a collection of essays in honor of John C. Ewers and Waldo R. Wedel (pp. 157–172). Washington, DC: Smithsonian Contributions to Anthropology no. 30.

    Google Scholar 

  • Hesse, B., & Wapnish, P. (1985). Animal bone archeology: from objectives to analysis. Manuals in archeology 5. Washington, DC: Taraxacum.

    Google Scholar 

  • Holdaway, S., & Wandsnider, L. (Eds.). (2008). Time in archaeology: time perspectivism revisited. Salt Lake City: University of Utah Press.

    Google Scholar 

  • Holtzman, R. C. (1979). Maximum likelihood estimation of fossil assemblage composition. Paleobiology, 5, 77–90.

    Google Scholar 

  • Horwitz, L. K. (2002). The development of archaeozoological research in Israel and the West Bank. Archaeofauna, 11, 131–145.

    Google Scholar 

  • Hudson, J. L. (1990). Advancing methods in zooarchaeology: an ethnoarchaeological study among the Aka. Doctoral dissertation. Santa Barbara: Department of Anthropology, University of California.

  • Hudson, J. L. (1993). The impacts of domestic dogs on bone in forager camps; or, the dog-gone bones. In J. [L.] Hudson (Ed.), From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 301–323). Occasional Paper no. 21. Carbondale: Center for Archaeological Investigations, Southern Illinois University.

  • Jamniczky, H. A., Brinkman, D. B., & Russell, A. P. (2008). How much is enough? A repeatable, efficient, and controlled sampling protocol for assessing taxonomic diversity and abundance in vertebrate microfossil assemblages. In J. T. Sankey & S. Baszio (Eds.), Vertebrate microfossil assemblages: their role in paleoecology and paleobiogeography (pp. 9–16). Bloomington: Indiana University Press.

    Google Scholar 

  • Jochim, M. A. (1976). Hunter-gatherer subsistence and settlement: a predictive model. New York: Academic Press.

    Google Scholar 

  • Joslin, T. L. (2012). Analytical sampling strategies for marine fish remains: measuring taxonomic diversity and abundance in central California middens. In M. A. Glassow & T. L. Joslin (Eds.), Exploring methods of faunal analysis: insights from California archaeology (pp. 135–147). Perspectives in California Archaeology Vol. 9. Los Angeles: Cotsen Institute of Archaeology, University of California.

  • Klein, R. G., & Cruz-Uribe, K. (1984). The analysis of animal bones from archeological sites. Chicago: University of Chicago Press.

    Google Scholar 

  • Knüsel, C. J., & Outram, A. K. (2004). Fragmentation: the zonation method applied to fragmented human remains from archaeological and forensic contexts. Environmental Archaeology, 9(1), 85–97.

    Google Scholar 

  • Lambacher, N., Gerdau-Rodnic, K., Bonthorne, E., & de Tarazaga Montero, F. J. V. (2016). Evaluating three methods to estimate the number of individuals from commingled context. Journal of Archaeological Science: Reports, 10, 674–683.

    Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.

    Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies: differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12, 221–236.

    Google Scholar 

  • Lyman, R. L. (1994a). Quantitative units and terminology in zooarchaeology. American Antiquity, 59, 36–71.

    Google Scholar 

  • Lyman, R. L. (1994b). Relative abundances of skeletal specimens and taphonomic analysis of vertebrate remains. PALAIOS, 9, 288–298.

    Google Scholar 

  • Lyman, R. L. (1994c). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L. (2006). Identifying bilateral pairs of deer (Odocoileus sp.) bones: how symmetrical is symmetrical enough? Journal of Archaeological Science, 33, 1256–1265.

    Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lyman, R. L. (2015a). The history of “laundry lists” in North American zooarchaeology. Journal of Anthropological Archaeology, 39, 42–50.

    Google Scholar 

  • Lyman, R. L. (2015b). On the variable relationship between NISP and NTAXA in bird remains and in mammal remains. Journal of Archaeological Science, 53, 291–296.

    Google Scholar 

  • Lyman, R. L. (2016). Theodore E. White and the development of zooarchaeology in North America. Lincoln: University of Nebraska Press.

    Google Scholar 

  • Lyman, R. L. (2017). Paleoenvironmental reconstruction from faunal remains: ecological basics and analytical assumptions. Journal of Archaeological Research, 25, 315–371.

    Google Scholar 

  • Lyman, R. L. (2018a). The history of MNI in North American zooarchaeology. In C. M. Giovas & M. LeFebvre (Eds.), Zooarchaeology in practice: case studies in methodology and interpretation in archaeofaunal analysis (pp. 13–33). New York: Springer.

    Google Scholar 

  • Lyman, R. L. (2018b). Observations on the history of zooarchaeological quantitative units: why NISP, then MNI, then NISP again? Journal of Archaeological Science: Reports, 18, 43–50.

  • Lyman, R. L., & Ames, K. M. (2007). On the use of species-area curves to detect the effects of sample size. Journal of Archaeological Science, 34, 1985–1990.

    Google Scholar 

  • Lyman, R. L., & VanPool, T. (2009). Metric data in archaeology: a study of intra-analyst and inter-analyst variation. American Antiquity, 74, 485–504.

    Google Scholar 

  • Marean, C. W., & Frey, C. J. (1997). Animal bones from caves to cities: reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.

    Google Scholar 

  • Medlock, R. C. (1976). Determining the minimum number of individuals in archeological faunal analysis. Master of Arts thesis. Fayetteville: Department of Anthropology, University of Arkansas.

  • Moore, J. R., Norman, D. B., & Upchurch, P. (2007). Assessing relative abundances in fossil assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 317–322.

    Google Scholar 

  • Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2017a). Problems of identification and quantification in archaeozoological analysis, part I: insights from a blind test. Journal of Archaeological Method and Theory, 24, 886–937.

    Google Scholar 

  • Morin, E., Ready, E., Boileau, A., Beauval, C., & Coumont, M.-P. (2017b). Problems of identification and quantification in archaeozoological analysis, part II: presentation of an alternative counting method. Journal of Archaeological Method and Theory, 24, 938–973.

    Google Scholar 

  • Morlan, R. E. (1994). Bison bone fragmentation and survivorship: a comparative method. Journal of Archaeological Science, 21, 797–807.

    Google Scholar 

  • Münzel, S. C. (1986). Coding system for bone fragments. In L. H. Van Wijngaarden-Bakker (Ed.), Database management and zooarchaeology (pp. 193–195). PACT 14. Strasbourg.

  • Münzel, S. C. (1988). Quantitative analysis and archaeological site interpretation. ArchaeoZoologia, 2(1, 2), 93–110.

    Google Scholar 

  • Nichol, R. K., & Creak, G. A. (1979). Matching paired elements among archaeological bone remains: a computer procedure and some practical limitations. Newsletter of Computer Archaeology, 14, 6–17.

    Google Scholar 

  • Parmalee, P. W. (1985). Identification and interpretation of archaeologically derived animal remains. In R. I. Gilbert & J. H. Mielke (Eds.), The analysis of prehistoric diets (pp. 61–95). New York: Academic Press.

    Google Scholar 

  • Payne, S. (1975). Partial recovery and sample bias. In A. T. Clason (Ed.), Archaeozoological studies (pp. 7–17). Amsterdam: North-Holland.

    Google Scholar 

  • Perkins Jr., D. (1973). A critique on the methods of quantifying faunal remains from archaeological sites. In J. Matolcsi (Ed.), Domestikationsforschung und geschichte der haustiere (pp. 367–370). Budapest: Academiai Kiado.

    Google Scholar 

  • Plog, F. T. (1973). Diachronic anthropology. In C. L. Redman (Ed.), Research and theory in current archeology (pp. 181–198). New York: John Wiley and Sons.

    Google Scholar 

  • Plog, F. T. (1974). The study of prehistoric change. New York: Academic Press.

    Google Scholar 

  • Plug, C., & Plug, I. (1990). MNI counts as estimates of species abundance. South African Archaeological Bulletin, 45, 53–57.

    Google Scholar 

  • Pollock, H. E. D., & Ray, C. E. (1957). Notes on vertebrate animal remains from Mayapan. Department of Archaeology, Carnegie Institution of Washington. Current Reports, 41, 633–656.

  • Rackham, D. J. (1986). Assessing the relative frequency of species by the application of a stochastic model to a zooarchaeological database. In L. H. van Wijngaarden-Bakker (Ed.), Database management and zooarchaeology (pp. 185–192). Strasbourg: PACT 14.

    Google Scholar 

  • Reitz, E. J. (1993). Zooarchaeology. In J. K. Johnson (Ed.), The development of Southeastern archaeology (pp. 109–131). Tuscaloosa: University of Alabama Press.

    Google Scholar 

  • Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (second ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ringrose, T. J. (1993). Bone counts and statistics. Journal of Archaeological Science, 20, 121–157.

    Google Scholar 

  • Robb, J. (2016). What can we really say about skeletal part representation, MNI and funerary ritual? A simulation approach. Journal of Archaeological Science: Reports, 10, 684–692.

    Google Scholar 

  • Robison, N. D. (1987). Zooarchaeology: its history and development. In A. E. Bogan & N. D. Robison (Eds.), The zooarchaeology of eastern North America: history, method and theory, and bibliography (pp. 1–26). Miscellaneous Paper no. 12. Knoxville: Tennessee Anthropological Association.

  • Rogers, R. R., Carrano, M. T., Rogers, K. A. C., Perez, M., & Reagan, A. K. (2017). Isotaphonomy in concept and practice: an exploration of vertebrate microfossil bonebeds in the upper cretaceous (Campanian) Judith River Formation, north-central Montana. Paleobiology, 43, 248–273.

    Google Scholar 

  • Rosell, J., Blasco, R., Fernández-Laso, M. C., Vaquero, M., & Carbonell, E. (2012). Connecting areas: faunal refits as a diagnostic element to identify synchronicity in the Abric Romaní archaeological assemblages. Quaternary International, 252, 56–67.

    Google Scholar 

  • Schiffer, M. B. (1987). Formation processes of the archaeological record. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Smith, B. D. (1975). Middle Mississippi exploitation of animal populations. Anthropological Papers no. 57. Ann Arbor: Museum of Anthropology, University of Michigan.

  • Staff, G., Powell, E. N., Stanton, R. J., & Cummins, H. (1985). Biomass: is it a useful tool in paleocommunity reconstruction? Lethaia, 18, 209–232.

    Google Scholar 

  • Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677–680.

    Google Scholar 

  • Stewart, K. M. (2002). Past and present zooarchaeology in Canada. Archaeofauna, 11, 147–157.

    Google Scholar 

  • Thomas, D. H. (1975). Nonsite sampling in archaeology: up the creek without a site? In J. W. Mueller (Ed.), Sampling in archaeology (pp. 61–81). Tucson: University of Arizona Press.

    Google Scholar 

  • Thomas, K. D., & Mannino, M. A. (2017). Making numbers count: beyond minimum numbers of individuals (MNI) for the quantification of mollusc assemblages from shell matrix sites. Quaternary International, 427, 47–58.

    Google Scholar 

  • Todd, L. C. (1987). Taphonomy of the Horner II bone bed. In G. C. Frison & L. C. Todd (Eds.), The Horner Site: the type site of the Cody Cultural Complex (pp. 107–198). Orlando: Academic Press.

    Google Scholar 

  • Todd, L. C., & Frison, G. C. (1992). Reassembly of bison skeletons from the Horner Site: a study in anatomical refitting. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 63–82). Oxford: BAR International Series 578.

    Google Scholar 

  • Todd, L. C., & Stanford, D. J. (1992). Application of conjoined bone data to site structural studies. In J. L. Hofman & J. G. Enloe (Eds.), Piecing together the past: applications of refitting studies in archaeology (pp. 21–35). Oxford: BAR International Series 578.

    Google Scholar 

  • Travouillon, K. J., Archer, M., Legendre, S., & Hand, S. J. (2007). Finding the minimum sample richness (MSR) for multivariate analyses: implications for palaeoecology. Historical Biology, 19, 315–320.

    Google Scholar 

  • Trusler, A. K. (2014). The impact of recovery methods on taxonomic richness in Roman faunal assemblages. Archaeometry, 56, 1075–1084.

    Google Scholar 

  • Vermeij, G. J., & Herbert, G. S. (2004). Measuring relative abundance in fossil and living assemblages. Paleobiology, 30, 1–4.

    Google Scholar 

  • Voorhies, M. R. (1969). Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Contributions to Geology, Special Paper no. 1. Laramie: University of Wyoming.

  • Watson, J. P. N. (1979). The estimation of the relative frequencies of mammalian species: Khirokitia 1972. Journal of Archaeological Science, 6, 127–137.

    Google Scholar 

  • White, T. E. (1953). A method of calculating the dietary percentage of various food animals utilized by aboriginal peoples. American Antiquity, 19, 396–398.

    Google Scholar 

  • Wild, C. J., & Nichol, R. K. (1983). Estimation of the original number of individuals from paired bone counts using estimators of the Krantz type. Journal of Field Archaeology, 10, 1337–1344.

    Google Scholar 

  • Zar, J. H. (1996). Biostatistical analysis (third ed.). Upper Saddle River, New Jersey: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

Helpful comments by five anonymous reviewers, particularly the two with very sharp eyes and pencils, helped me polish the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lee Lyman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyman, R.L. A Critical Review of Four Efforts to Resurrect MNI in Zooarchaeology. J Archaeol Method Theory 26, 52–87 (2019). https://doi.org/10.1007/s10816-018-9365-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-018-9365-3

Keywords

Navigation