Skip to main content
Log in

Building an Experimental Comparative Reference Collection for Lithic Micro-Residue Analysis Based on a Multi-Analytical Approach

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Residue analysis applied to stone tools is a useful aid for better understanding their past function and, by extension, reconstructing early human behaviour. However, if the nature of residues found on the lithic tools is misinterpreted, so will be our understanding of their archaeological context. As a consequence, correctly identifying residues in the domain of lithic studies is of paramount importance. With this main goal in mind, we analysed different experimental materials likely to have been involved in daily tasks in the prehistoric context (e.g. bone, wood, meat). Microscopic analyses were then carried out using two (comparable) techniques: Optical Light Microscopy and Scanning Electron Microscopy. Also, energy dispersive X-rays spectroscopy (EDX or EDS) was applied to the experimental samples to determine their elemental composition. Advantages and disadvantages of both microscopic methods and their implications for correct residue identification are discussed. The distribution of residues on lithic surfaces is also considered. This study resulted in the construction of a data-set including both photographic material and EDX spectra for each residue analysed. The main result is that, compared to OLM scanning, SEM analyses highly improves the accuracy of residue identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Anderson, P. C. (1980). A testimony of prehistoric tasks: Diagnostic residues on stone tool working edges. World Archaeology, 12, 181–193.

    Article  Google Scholar 

  • Anderson-Gerfaud, P. C. (1986). A few comments concerning residue analysis of stone plant-processing tools. In L. Owen & G. Unrath (Eds.), Technical aspects of microwear studies on stone tools (pp. 69–81). Early Man News.

  • Barnard, H., & Eerkens, J. W. (Eds.). (2007). Theory and Practice in Archaeological Residue Analysis. BAR international Series 1650. Oxford: Archaeopress.

    Google Scholar 

  • Barnard, H., Ambrose, S. H., Beehr, D. E., Forster, M. D., Lanehart, R. E., Malainey, M. E., Parr, R. E., Rider, M., Solazzo, C., & Yohe II, R. M. (2007). Mixed results of seven methods for organic residue analysis applied to one vessel with the residue of a known foodstuff. Journal of Archaeological Science, 34, 28–37.

    Article  Google Scholar 

  • Boëda, E., Bonilauri, S., Connan, J., Jarvie, D., Mercier, N., Tobey, M., Valladas, H., al Sakhel, H., & Muhesen, S. (2008). Middle Palaeolithic bitumen use at umm el Tlel around 70 000 BP. Antiquity, 82, 853–861.

    Article  Google Scholar 

  • Borel, A., Ollé, A., Vergès, J. M., & Sala, R. (2014). Scanning electron and optical light microscopy: Two complementary approaches for the understanding and interpretation of usewear and residues on stone tools. Journal of Archaeological Science, 48, 46–59.

    Article  Google Scholar 

  • Briuer, F. L. (1976). New clues to stone tool function: Plant and animal residues. American Antiquity, 41(4), 478–484.

    Article  Google Scholar 

  • Byrne, L., Ollé, A., & Vergès, J. M. (2006). Under the hammer: Residues resulting from production and microwear on experimental stone tools. Archaeometry, 48, 546–564.

    Article  Google Scholar 

  • Carbonell, E., Esteban, M., Martín, A., Mosquera, M., Rodríguez, X. P., Ollé, A., Sala, R., Vergès, J. M., Bermúdez de Castro, J. M., & Ortega, A. I. (1999). The Pleistocene site of Gran Dolina, Sierra de Atapuerca, Spain: A history of the archaeological investigations. Journal of Human Evolution, 37, 313–324.

    Article  Google Scholar 

  • Carbonell, E., Huguet, R., Cáceres, I., Lorenzo, C., Mosquera, M., Ollé, A., Rodríguez, X. P., Saladié, P., Vergès, J. M., García-Medrano, P., Rosell, J., Vallverdú, J., Carretero, J. M., Navazo, M., Ortega, A. I., Marinón-Torres, M., Morales, J. I., Aranburu, A., Canals, A., Carrancho, A., Castilla, M., Expósito, I., Fontanals, M., Francés, M., Galindo-Pellicena, M. A., García-Antón, D., García, N., García, A., García, R., Gómez-Merino, G., Iriarte, E., Lombera-Hermida, A., López-Polín, L., Lozano, M., Made van der, J., Martínez, I., Mateos, A., Pérez-Romero, A., Poza-Rey, E., Quam, R., Rodríguez-Hidalgo, A., Rodríguez, J., Rodríguez, L., Santos, E., Terradillos, M., Bermúdez de Castro, J. M., & Arsuaga, J. L. (2014). Sierra de Atapuerca archaeological sites. In R. Sala (Ed.), Pleistocene and Holocene hunter-gatherers in Iberia and the Gibraltar Strait: The current archaeological record (pp. 534–560). Burgos: Universidad de Burgos-Fundación Atapuerca.

    Google Scholar 

  • Cârciumaru, M., Ion, R. M., Niţu, E. C., & Ştefănescu, R. (2012). New evidence of adhesive as hafting material on Middle and upper Palaeolithic artefacts from Gura Cheii-Râşnov Cave (Romania). Journal of Archaeological Science, 39, 1942–1950.

    Article  Google Scholar 

  • Charrié-Duhaut, A., Porraz, G., Cartwright, C. R., Igreja, M., Connan, J., Poggenpoel, C., & Texier, P. J. (2013). First molecular identification of a hafting adhesive in the late Howiesons Poort at Diepkloof rock shelter (wester cape, South Africa). Journal of Archaeological Science, 40(9), 3506–3518.

    Article  Google Scholar 

  • Chen, P. Y., Stokes, A. G., & McKittrick, J. (2009). Comparison of structure and mechanical properties of bovine femur bone and antler of the north American elk (Cervus elaphus Canadensis). Acta Biomaterialia, 5, 693–706.

    Article  Google Scholar 

  • Cristiani, E., Pedrotti, A., & Gialanella, S. (2009). Tradition and innovation between the Mesolithic and early Neolithic in the Adige Valley (Northeast Italy). New data from a functional and residue analyses of trapezes from Gaban rockshelter. Documenta Praehistorica, 36, 191–205.

    Article  Google Scholar 

  • Cristiani, E., Živaljević, I., & Borić, D. (2014). Residue analysis and ornament suspension techniques in prehistory: Cyprinid pharyngeal teeth beads from late Mesolithic burials at Vlasac. Journal of Archaeological Science, 46, 292–310.

    Article  Google Scholar 

  • Croft, S., Monnier, G., Radini, A., Little, A., & Milner, N. (2016). Lithic residue survival and characterisation at star Carr: A burial experiment. Internet Archaeology, 42. doi:10.11141/ia.42.5.

  • Custer, J. F., Ilgenfritz, J., & Doms, K. R. (1988). A cautionary note on the use of chemistrips for detection of blood residues on prehistoric stone tools. Journal of Archaeological Science, 15, 343–345.

    Article  Google Scholar 

  • d’Errico, F., Salomon, H., Vignaud, C., & Stringer, C. (2010). Pigments from the Middle Palaeolithic levels of Es-Skhul (Mount Carmel, Israel). Journal of Archaeological Science, 37, 3099–3110.

    Article  Google Scholar 

  • Dinnis, R., Pawlik, A., & Gaillard, C. (2009). Bladelet cores as weapon tips? Hafting residue identification and micro-wear analysis of three carinated burins from the late Aurignacian of les Vachons, France. Journal of Archaeological Science, 36, 1922–1934.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., Serrallonga, J., Juan-Tresserras, J., Alcalá, L., & Luque, L. (2001). Woodworking activities by early humans: A plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution, 40, 289–299.

    Article  Google Scholar 

  • Dove, C. J., & Peurach, S. C. (2002). Microscopic analysis of feather and hair fragments associated with human mummified remains from Kagamil Island, Alaska. In B. Frohlich, A. B. Harper, & R. Gilberg (Eds.), To the Aleutians and beyond - the anthropology of William S. Laughlin (pp. 51–62). Copenhagen: Publications of the National Museum, Ethnographical Series, 20, The National Museum of Denmark.

    Google Scholar 

  • Dove, C. J., Hare, P. G., & Heacker, M. (2005). Identification of ancient feather fragmentsfound in melting alpine ice patches in Southern Yukon. Arctic, 58(1), 38–43.

    Google Scholar 

  • Eerkens, J. W. (2002). The preservation and identification of Piñon resins by GC-MS in pottery from the Western Great Basin. Archaeometry, 44(1), 95–105.

    Article  Google Scholar 

  • Eerkens, J. W. (2005). GC-MS analysis and fatty acid ratios of archaeological potsherds from the Western Great Basin of North America. Archaeometry, 47(1), 83–102.

    Article  Google Scholar 

  • Eerkens, J. W. (2007). Organic residue analysis and the decomposition of fatty acids in ancient postherds. In H. Barnard & J. W. Eerkens (Eds.), Theory and practice in archaeological residue analysis (pp. 90–98). Oxford: BAR International Series, 1650, Archaeopress.

    Google Scholar 

  • Evershed, R. P. (2008). Organic residue analysis in archaeology: The archaeological biomarker revolution. Archaeometry, 50(6), 895–924.

    Article  Google Scholar 

  • Evershed, R. P., Heron, C., & Goad, L. J. (1990). Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst, 115, 1339–1342.

    Article  Google Scholar 

  • Fiore, D., Maier, M., Parera, S. D., Orquera, L., & Piana, E. (2008). Chemical analyses of the earliest pigment residues from the uttermost part of the planet (Beagle Channel region, Tierra del Fuego, Southern South America). Journal of Archaeological Science, 35, 3047–3056.

    Article  Google Scholar 

  • Fullagar, R. (2006). Residues and usewear. In J. Balme & A. Paterson (Eds.), Archaeology in practice. A student guide to archaeology analyses (pp. 207–234). Malden: Blackwell Publishing.

    Google Scholar 

  • Fullagar, R., Hayes, E., Stephenson, B., Field, J., Matheson, C., Stern, N., & Fitzsimmons, K. (2015). Evidence for Pleistocene seed grinding at Lake Mungo, south-eastern Australia. Archaeology in Oceania, 50, 3–19.

    Article  Google Scholar 

  • van Gijn, Chan B., Langejans, G., Sorensen, A., Tsoraki, C., & Verbaas, A. (Eds.) (2015). AWRANA 2015 Connecting people and technologies. Abstract book.

  • Gomes, H., Collado, H., Martins, A., Nash, G. H., Rosina, P., Vaccaro, C., & Volpe, L. (2014). Pigment in Western Iberian schematic rock art: An analytical approach. Mediterranean Archaeology and Archaeometry, 15(1), 163–175.

    Google Scholar 

  • Gurfinkel, D. M., & Frankling, U. M. (1988). A study of the feasibility of detecting blood residue on artifacts. Journal of Archaeological Science, 15, 83–97.

    Article  Google Scholar 

  • Hardy, B. L., & Garufi, G. T. (1998). Identification of woodworking on stone tools through residue and use-wear analysis: Experimental results. Journal of Archaeological Science, 25, 177–184.

    Article  Google Scholar 

  • Hardy, B. L., & Moncel, H. M. (2011). Neanderthal use of fish, mammals, birds, starchy plants and wood 125-250,000 years ago. PloS One, 6(8), e23768. doi:10.1371/journal.pone.0023768.

    Article  Google Scholar 

  • Hardy, B. L., Kay, M., Marks, A. E., & Monigal, K. (2001). Stone tool function at the Paleolithic sites of Starosele and buran Kaya III, Crimea: Behavioral implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10972–10977.

    Article  Google Scholar 

  • Hardy, B. L., Moncel, M. H., Daujeard, C., Fernandes, P., Béarez, P., Desclaux, E., Chacón Navarro, M. G., Puaud, S., & Gallotti, R. (2013). Impossible Neanderthals? Making string, throwing projectiles and catching small game during marine isotope stage 4 (Abri du Maras, France). Quaternary Science Reviews, 82, 23–40.

    Article  Google Scholar 

  • Haslam, M. (2005). The decomposition of starch grains in soils: Implications for archaeological residue analyses. Journal of Archaeological Science, 31, 1715–1734.

    Article  Google Scholar 

  • Haslam, M., Robertson, G., Crowther, A., Nugent, S., & Kirkwood, L. (Eds.) (2009). Archaeological science under the microscope. Studies in residues and ancient DNA analysis in honour of Thomas H. Loy. Terra Australis, 30, ANU E Press.

  • Hauck, T. C., Connan, J., Charrié-Duhaut, A., Le Tensorer, J. M., & al Sakhel, H. (2013). Molecular evidence of bitumen in the Mousterian lithic assemblage of Hummal (Central Syria). Journal of Archaeological Science, 40, 3252–3262.

    Article  Google Scholar 

  • Helwig, K., Monahan, V., Poulin, J., & Andrews, T. D. (2014). Ancient projectile weapons from ice patches in northwestern Canada: Identification of resin and compound resin-ochre hafting adhesives. Journal of Archaeological Science, 41, 655–665.

    Article  Google Scholar 

  • Herdion, L., Verlaque, R., Saltonstall, K., Leriche, A., & Vila, B. (2014). Origin of the invasive Arundo donax (Poacee): A trans-Asian expedition in herbaria. Annals of Botany, 114, 455–462.

    Article  Google Scholar 

  • Högberg, A., Puseman, K., & Yost, C. (2009). Integration of use-wear with protein residue analysis- a study of tool use and function in the south Scandinavian early Neolilthic. Journal of Archaeological Science, 36, 1725–1737.

    Article  Google Scholar 

  • Hortolà, P. (2005). SEM examination of human erythrocytes in uncoated bloodstains on stone: Use of conventional as environmental-like SEM in a soft biological tissue (and hard inorganic material). Journal of Microscopy, 2(218), 94–103.

    Article  Google Scholar 

  • Hurcombe, L. M., (1986). Residue studies on obsidian tools. In L. R. Owen, G. Unrath (Eds), Technical Aspects of Microwear Studies on Stone Tools. Early Man News 9/10/11 (pp. 83–90).

  • Jahren, A. H., Toth, N., Schick, K., Clark, J. D., & Amundson, R. G. (1997). Determining stone tool use: Chemical and morphological analyses of residues on experimentally manufactured stone tools. Journal of Archaeological Science, 24, 245–250.

    Article  Google Scholar 

  • Kealhofer, L., Torrence, R., & Fullagar, R. (1999). Integrating phytoliths within use-wear/residue studies of stone tools. Journal of Archaeological Science, 26, 527–546.

    Article  Google Scholar 

  • Kooyman, B., Newman, M. E., & Ceri, H. (1992). Verifying the reliability of blood residue analysis on archaeological tools. Journal of Archaeological Science, 19, 265–269.

    Article  Google Scholar 

  • Langejans, G. H. J. (2010). Remains of the day-preservation of organic micro-residues on stone tools. Journal of Archaeological Science, 37, 971–985.

    Article  Google Scholar 

  • Langejans, G. H. J. (2011). Discerning use-related micro-residues on tools: Testing the multi-stranded approach for archaeological studies. Journal of Archaeological Science, 38, 985–1000.

    Article  Google Scholar 

  • Langejans, G. H. J. (2012). Middle stone age pièces esquillées from Sibudu Cave, South Africa: An initial micro-residue study. Journal of Archaeological Science, 39, 1694–1704.

    Article  Google Scholar 

  • Launey, M., Chen, P. Y., McKittrick, J., & Ritchie, R. O. (2010). Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 6, 1505–1514.

    Article  Google Scholar 

  • Lemorini, C., & Nunziante, S. (Eds.). (2014). Proceeding of the international conference “an integration of use wear and residues analysis for the identification of the function of archaeological stone tools”. Oxford: BAR International Series, 2649.

    Google Scholar 

  • Lombard, M. (2004). Distribution patterns of organic residues on Middle stone age points from Sibudu Cave, Kwazulu-Natal, South Africa. South African Archaeological Bulletin, 59(180), 37–44.

    Article  Google Scholar 

  • Lombard, M. (2005). Evidence of hunting during the Middle stone age at Sibudu Cave, KwaZulu-Natal, South Africa: A multianalytical approach. Human Evolution, 48, 279–300.

    Article  Google Scholar 

  • Lombard, M. (2008). Finding resolution for the Howiesons Poort through the microscope: Micro-residue analysis of segments from Sibudu Cave, South Africa. Journal of Archaeological Science, 35(1), 26–41.

    Article  Google Scholar 

  • Lombard, M., & Wadley, L. (2007). The morphological identification of micro-residues on stone tools using light microscopy: Progress and difficulties based on blind tests. Journal of Archaeological Science, 34(1), 155–165.

    Article  Google Scholar 

  • Loy, T. H. (1983). Prehistoric blood residues: Detection on tool surfaces and identification of species of origin. Science, 220, 1269–1271.

    Article  Google Scholar 

  • Loy, T. H., & Dixon, E. J. (1998). Blood residues on fluted points from eastern Beringia. American Antiquity, 63(1), 21–46.

    Article  Google Scholar 

  • Luo, W., Li, T., Wang, C., & Huang, F. (2012). Discovery of beeswax as binding agent on a 6th-century BC Chinese turquoise-inlaid bronze sword. Journal of Archaeological Science, 39, 1227–2137.

    Article  Google Scholar 

  • Manning, A. P. (1994). A cautionary note on the use of Hemastix and dot-blot assays for the detection and confirmation of archaeological blood residues. Journal of Archaeological Science, 21, 159–162.

    Article  Google Scholar 

  • Marreiros, J., Bicho, N., & Gibaja, J. F. (2014). International conference on use-wear analysis. Use-wear 2012. UK: Cambridge Scholar Publishing.

    Google Scholar 

  • Mazza, P. P. A., Martini, F., Sala, B., Magi, M., Colombini, M. P., Giachi, G., Landucci, F., Lemorini, C., Modugno, F., & Ribechini, E. (2006). A new Palaeolithic discovery: Tar-hafted stone tools in a European mid-Pleistocene bone-bearing bed. Journal of Archaeological Science, 33, 1310–1318.

    Article  Google Scholar 

  • Mescher, A. L., & Junqueira, L. C. U. (2013). Junqueira’s basic histology: Text and atlas. China: The McGraw-Hill Companies.

    Google Scholar 

  • Monnier, G. F., Ladwig, J. L., & Porter, S. T. (2012). Swept under the rug: The problem ofunacknowledged ambiguity in lithic residue identification. Journal of Archaeological Science, 39, 3284–3300.

    Article  Google Scholar 

  • Monnier, G. F., Hauck, T. C., Feinberg, J. M., Luo, B., Le Tensorer, J. M., & al Sakhel, H. (2013). A multi-analytical methodology of lithic residue analysis applied to Paleolithictools from Hummal, Syria. Journal of Archaeological Science, 40, 3722–3739.

    Article  Google Scholar 

  • Monnier, G. F., Frahm, E., Luo, B., & Missal, K. (2017). Developing FTIR microspectroscopy for analysis of plant residues on stone tools. Journal of Archaeological Science, 78, 158–178.

    Article  Google Scholar 

  • Ollé, A., & Vergès, J. M. (2014). The use of sequential experiments and SEM in documenting stone tool microwear. Journal of Archaeological Science, 48, 60–72.

    Article  Google Scholar 

  • Ollé, A., Mosquera, M., Rodríguez, X. P., de Lombera-Hermida, A., García-Antón, M. D., García-Medrano, P., Pena, L., Menendez, L., Navazo, M., Terradillos, M., Bargallo, A., Márquez, B., Sala, R., & Carbonell, E. (2013). The early and Middle Pleistocene technological record from Sierra de Atapuerca (Burgos, Spain). Quaternary International, 295, 138–167.

    Article  Google Scholar 

  • Ollé, A., Pawlik, A. F., Longo, L., Skakun, N., Gibaja, J. F., & Sala, R. (2017). New contributions to the functional analysis of prehistoric tools. Quaternary International, 427B, 2–5.

  • Oudemans, T. F. M., Eijkel, G. B., & Boon, J. J. (2007). Identifying biomolecular origins of solid residues preserved in iron pottery using DTMS and MVA. Journal of Archaeological Science, 34, 173–193.

    Article  Google Scholar 

  • Pawlik, A. F. (2004a). Identification of hafting traces and residues by scanning electron microscopy and energy-dispersive analysis of x-rays. In E. A. Walker, F. Wenban Smith, & F. Healy (Eds.), Lithics in Action: Papers from the conference “lithic studies in the year 2000” (pp. 169–179). Oxford: Oxbow Books.

    Google Scholar 

  • Pawlik, A. F. (2004b). An early bronze age pocket lighter. In E. A. Walker, F. Wenban-Smith, & F. Healy (Eds.), Lithics in Action: Papers from the conference “lithic studies in the year 2000” (pp. 153–155). Oxford: Oxbow Books.

    Google Scholar 

  • Pawlik, A. F., & Thissen, J. P. (2011). Hafted armatures and multi-component design atthe Micoquian site of Inden-Altdorf, Germany. Journal of Archaeological Science, 38, 1699–1708.

    Article  Google Scholar 

  • Pedergnana, A., & Blasco, R. (2016). Characterising the exploitation of avian resources: An experimental combination of lithic use-wear, residue and taphonomic analyses. Quaternary International, 421, 255–269.

    Article  Google Scholar 

  • Pedergnana, A., & Ollé, A. (2017). Monitoring and interpreting the use-wear formation processes on quartzite flakes through sequential experiments. Quaternary International, 427B, 35–65.

  • Pedergnana, A., Asryan, L., Fernández-Marchena, J. L., & Ollé, A. (2016). Modern contaminants affecting microscopic residue analysis on stone tools: A word of caution. Micron, 86, 1–21.

    Article  Google Scholar 

  • Pedergnana, A., García-Antón, M. D., & Ollé, A. (2017). Structural study of two quartzite varieties from the Utrillas facies formation (Olmos de Atapuerca, Burgos, Spain): From a petrographic characterisation to a functional analysis design. Quaternary International, 433, 163–178.

  • Perrault, K. A., Stefanuto, P. H., Dubois, L., Cnuts, D., Rots, V., & Focant, J. F. (2016). A new approach for the characterization of organic residues from stone tools using GCxGC-TOFMS. Separations, 2016, 3(16). doi:10.3390/separations3020016.

    Google Scholar 

  • Piperno, D. R. (1984). A comparison and differentiation of phytoliths from maize and wild grass: Use of morphological criteria. American Antiquity, 49(2), 361–383.

    Article  Google Scholar 

  • Prinsloo, L. C., Wadley, L., & Lombard, M. (2014). Infrared reflectance spectroscopy as analytical technique for the study of residues on stone tools: Potential and challenges. Journal of Archaeological Science, 41, 732–739.

    Article  Google Scholar 

  • Rifkin, R. F., Prinsloo, L. C., Dayet, L., Haaland, M. M., Henshilwood, C. S., Lozano Diz, E., Moyo, S., Vogelsang, R., & Kambombo, F. (2016). Characterising pigments on 30 000-year-old portable art from Apollo 11 Cave, Karas region, Southern Namibia. Journal of Archaeological Science: Reports, 5, 336–347.

    Article  Google Scholar 

  • Rodríguez, J., Burjachs, F., Cuenca-Bescós, G., García, N., Made, J. V. D., PérezGonzález, A., Blain, H., Expósito, I., López-García, J. M., García Antón, M., Allué, E., Cáceres, I., Huguet, R., Mosquera, M., Ollé, A., Rosell, J., Parés, J. M., Rodríguez, X. P., Díez, J. C., Rofes, J., Sala, R., Saladié, P., Vallverdú, J., Bennàsar, L., Blasco, R., Bermúdez de Castro, J. M., & Carbonell, E. (2011). One million years of cultural evolution in a stable environment at Atapuerca (Burgos, Spain). Quaternary Science Reviews, 30, 1396–1412.

    Article  Google Scholar 

  • Rodríguez-Hidalgo, A., Saladié, P., Ollé, A., & Carbonell, E. (2015). Hominin subsistence and site function of TD10.1 bone bed level at Gran Dolina site (Atapuerca) during the late Acheulean. Journal of Quaternary Science, 30, 679–701.

    Article  Google Scholar 

  • Rots, V. (2010). Prehension and hafting traces on Flint tools. A methodology. Leuven: Leuven University Press.

    Google Scholar 

  • Rots, V., & Williamson, B. S. (2004). Microwear and residues analyses in perspective: The contribution of ethnoarchaeological evidence. Journal of Archaeological Science, 31, 1287–1299.

    Article  Google Scholar 

  • Rots, V., Hardy, B. L., Serangeli, J., & Conard, N. J. (2015). Residue and microwear analyses of the stone artifacts from Shöningen. Journal of Human Evolution, 89, 298–308.

    Article  Google Scholar 

  • Rots, V., Hayes, E., Cnuts, D., Lepers, C., & Fullagar, R. (2016). Making sense of residues on flaked stone artefacts: Learning from blind tests. PloS One, 11(3), e0150437. doi:10.1371/journal.pone.0150437.

    Article  Google Scholar 

  • Rowell, R. M. (2005). Handbook of wood chemistry and wood composites. FL: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Seeman, M. F., Nilson, N. E., Summers, G. L., Morris, L. L., Barans, P. J., Dowd, E., & Newman, E. (2008). Evaluating protein residues on Gainey phase Paleoindian stone tools. Journal of Archaeological Science, 35, 2742–2750.

    Article  Google Scholar 

  • Semenov, S. A. (1964). Prehistoric technology. London: Cory, Adams and Mackay.

    Google Scholar 

  • Shafer, H. J., & Holloway, R. G. (1979). Organic residue analysis in determining stone tool function. In B. Hayden (Ed.), Lithic use-wear analysis (pp. 385–399). New York: Academic Press.

    Google Scholar 

  • Smith, G. D., & Clark, R. J. H. (2004). Raman microscopy in archaeological science. Journal of Archaeological Science, 31, 1137–1160.

    Article  Google Scholar 

  • Sobolik, K. D. (1996). Lithic organic residue analysis: An example from the southwestern archaic. Journal of Field Archaeology, 23(4), 461–469.

    Google Scholar 

  • Solodenko, N., Zupancich, A., Nunziante Cesaro, S., Marder, O., Lemorini, C., & Barkai, R. (2015). Fat residue and use-wear found on Acheulian biface and scraper associated with butchered elephant remains at the site of Revadim, Israel. PloS One, 10(3), e0118572. doi:10.1371/journal.pone.0118572.

    Article  Google Scholar 

  • Stephenson, B. (2015). A modified Picro-Sirius red (PSR) staining procedure with polarization microscopy for identifying collagen in archaeological residues. Journal of Archaeological Science, 61, 235–243.

    Article  Google Scholar 

  • Wadley, L., & Lombard, M. (2007). Small things in perspective: The contribution of our blind tests to micro-residue studies on archaeological stone tools. Journal of Archaeological Science, 34, 1001–1010.

    Article  Google Scholar 

  • Wadley, L., Lombard, M., & Williamson, B. (2004). The first residue analysis blind tests: Results and lessons learnt. Journal of Archaeological Science, 31(11), 1491–1501.

    Article  Google Scholar 

  • Wiederhold, J. E. (2004). Toward the standardization of use-wear studies: Constructing an analogue to prehistoric hide work. Graduate thesis submitted to the Texas A&M University.

  • Xhauflair, H., (2014). Plant Use in the Subsistence Strategies of Prehistoric Huntergatherers in Palawan Island Assessed from the Lithic Industry. Building up a Reference Collection. PhD thesis submitted to the Muséum National d’Histoire Naturelle, France.

  • Xhauflair, H., Pawlik, A., Forestier, H., Saos, T., Dizon, E., & Gailalrd, C. (2017). Use-related or contamination? Residue and use-wear mapping on stone tools used for experimental processing of plants from Southeast Asia. Quaternary International, 427B, 80–93.

  • Yohe II, R. M., & Bamforth, D. B. (2013). Late Pleistocene protein residues from the Mahaffy cache, Colorado. Journal of Archaeological Science, 40, 2337–2343.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the MINECO-FEDER (project CGL2015-65387-C3-1-P), by the AGAUR (project SGR 2014-899) and by the URV (projects 2014, 2015 and 2016PFR-URV-B2-17), and it is framed in CERCA Programme / Generalitat de Catalunya. A.P. is the beneficiary of a FI-DGR pre-doctoral grant from the Generalitat de Catalunya (2014FI_B 00539).

We are thankful to the Servei de Recursos Científics i Tècnics team of the Rovira i Virgili University (Tarragona, Spain) for their help during SEM sessions. We warmly thank Deborah Barsky for the language revision of this text. We are also grateful to two anonymous reviewers, whose comments have significantly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pedergnana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedergnana, A., Ollé, A. Building an Experimental Comparative Reference Collection for Lithic Micro-Residue Analysis Based on a Multi-Analytical Approach. J Archaeol Method Theory 25, 117–154 (2018). https://doi.org/10.1007/s10816-017-9337-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-017-9337-z

Keywords

Navigation