Skip to main content
Log in

The Importance of Multiple 14C Dates from Significant Archaeological Contexts

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Radiocarbon (14C) dates are the most important means for determining the age of Holocene archaeological deposits. The theoretical physical basis of this method is by now unassailable, having been consistently tested and refined over two generations. However, the means by which this method has been applied and the interpretation of these results remain as key issues, particularly for complex archaeological discoveries that substantially affect our understanding of world prehistory and social evolution. Many factors can produce uncertainty or variation in the 14C concentrations of samples, even those that have been selected from the same archaeological context or event. A number of recent studies have also addressed the ways in which ambiguities and irregularities in the 14C calibration curve can affect the interpretation of archaeological dates and temporal patterns. Of greatest concern, however, is a growing practice of using only one or two samples to date a significant prehistoric context or event. The date of these events, usually relative to other human activities, often holds important theoretical implications for evolutionary anthropology and related disciplines. In this article, we demonstrate that such a practice is rarely adequate or acceptable. Rather, proper procedure requires a suite of dates that permit statistical verification that the deposit or event itself is being correctly dated. We present a detailed case study that highlights the importance of analyzing multiple samples of 14C from significant archaeological contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott, M. B., Wolfe, B. B., Aravena, R., Wolfe, A. P., & Seltzer, G. O. (2000). Holocene hydrological reconstructions from stable isotopes and paleolimnology, Cordillera Real, Bolivia. Quaternary Science Reviews, 19(17), 1801–1820.

    Article  Google Scholar 

  • Ahlstrom, R. V. N. and Smiley, F.E. (1998) Archaeological chronometry: Radiocarbon and tree-ring models and applications from Black Mesa, Arizona. Southern Illinois University Center for Archaeological Investigations Occasional Paper 16. Carbondale: Southern Illinois University.

  • Bamforth, D. B., & Grund, B. (2012). Radiocarbon calibration curves, summed probability distributions, and early Paleoindian population trends in North America. Journal of Archaeological Science, 39(6), 1768–1774. doi:10.1016/j.jas.2012.01.017.

    Article  Google Scholar 

  • Bard, E. (1998). Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta, 62(12), 2025–2038.

    Article  Google Scholar 

  • Bard, E., Hamelin, B., Fairbanks, R. G., & Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345, 405–410.

    Article  Google Scholar 

  • Blackwell, P. G., Buck, C. E., & Reimer, P. J. (2006). Important features of the new radiocarbon calibration curves. Quaternary Science Reviews, 25, 408–413.

    Article  Google Scholar 

  • Brennan, R., & Quade, J. (1997). Reliable late-Pleistocene stratigraphic ages and shorter groundwater travel times from 14C in fossil snails from the southern Great Basin. Quaternary Research, 47(3), 329–336. doi:10.1006/qres.1997.1895.

    Article  Google Scholar 

  • Bronk Ramsey, C. (2009a). Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1), 337–360.

    Google Scholar 

  • Bronk Ramsey, C. (2009b). Dealing with outliers and offsets in radiocarbon dating. Radiocarbon, 51(3), 1023–1045.

    Google Scholar 

  • Chávez, S., & Chávez, K. M. (1975). A carved stone stela from Taraco, Puno, Peru, and the definition of an early style of stone sculpture from the altiplano of Peru and Bolivia. Ñawpa Pacha, 13, 45–83.

    Google Scholar 

  • Cook, A. C., Hainsworth, L. J., Sorey, M. L., Evans, W. C., & Southon, J. R. (2001). Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: A long-term record of magmatic CO2 release. Chemical Geology, 177(1–2), 117–131.

    Article  Google Scholar 

  • Culleton, B. J., Kennett, D. J., Ingram, B. L., Erlandson, J. M., & Southon, J. R. (2006). Intrashell radiocarbon variability in marine mollusks. Radiocarbon, 48(3), 387–400.

    Google Scholar 

  • Dean, J. S. (1978). Independent dating in archaeological analysis. In M. B. Schiffer (Ed.), Advances in archaeological method and theory 1 (pp. 223–255). New York: Academic Press.

    Google Scholar 

  • Geyh, M. A. (2000). An overview of (14)C analysis in the study of groundwater. Radiocarbon, 42(1), 99–114.

    Google Scholar 

  • Geyh, M. A., & Schleicher, H. (1990). Absolute age determination: Physical and chemical dating methods and their application. Berlin: Springer.

    Book  Google Scholar 

  • Hertelendi, E. (1990). Sources of random error in the Debrecen Radiocarbon Laboratory. Radiocarbon, 32(3), 283–287.

    Google Scholar 

  • Keith, M. L., Anderson, G. M., & Eichler, R. (1964). Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta, 28, 1757–1786. doi:10.1016/0016-7037(64)90021-3.

    Article  Google Scholar 

  • Kidder, A., II (1943). Some early sites in the Northern Lake Titicaca Basin. Vol. 27, No. 1, Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University. Cambridge.

  • Kra, R. (1986). Standardizing procedures for collecting, submitting, recording, and reporting radiocarbon samples. Radiocarbon, 28(2A), 765–775.

    Google Scholar 

  • Levine, A. R. (2012). Competition, cooperation, and the emergence of regional centers in the Northern Lake Titicaca Basin, Peru. Ph.D. dissertation, University of California, Los Angeles

  • Levy, T. E., Higham, T., Bronk Ramsey, C., Smith, N. G., Ben-Yosef, E., Robinson, M., et al. (2008). High-precision radiocarbon dating and historical biblical archaeology in southern Jordan. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16460–16465. doi:10.1073/pnas.0804950105.

    Article  Google Scholar 

  • Libby, W. F. (1952). Radiocarbon dating. Chicago: University of Chicago Press.

    Google Scholar 

  • Libby, W. F. (1955). Radiocarbon dating. Chicago: University of Chicago Press.

    Google Scholar 

  • Lumbreras, L. G., & Amat, H. Secuencia arqueológica del Altiplano occidental del Titicaca. In XXXVII Congreso Internacional de Americanistas, Actas y Memorias, Buenos Aires, 1968 (Vol. 2, pp. 75–106)

  • Mangerud, J. (1972). Radiocarbon dating of marine shells, including a discussion of apparent age of Recent shells from Norway. Boreas, 1(2), 143–172.

    Article  Google Scholar 

  • Manning, S. W. (2006–2007). Why radiocarbon dating 1200 BCE is difficult: a sidelight on dating the end of the Late Bronze Age and the contrarian contribution. Scripta Mediterranea, 27, 53–80.

    Google Scholar 

  • Marcus, J. (2008). The archaeological evidence for social evolution. Annual Review of Anthropology, 37, 251–266. doi:10.1146/Annurev.Anthro.37.081407.085246.

    Article  Google Scholar 

  • Marcus, J., & Flannery, V. K. (2000). Cultural evolution in Oaxaca: The origins of the Zapotec and Mixtec civilizations. In W. R. E. Adams & J. M. MacLeod (Eds.), Mesoamerica. Cambridge: Cambridge University Press.

    Google Scholar 

  • Marcus, J., & Flannery, K. V. (2004). The coevolution of ritual and society: New 14C dates from ancient Mexico. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18257–18261. doi:10.1073/pnas.0408551102.

    Article  Google Scholar 

  • Martin, C. W., & Johnson, W. C. (1995). Variation in radiocarbon ages of soil organic matter fractions from Late Quaternary buried soils. Quaternary Research, 43(2), 232–237. doi:10.1006/qres.1995.1023.

    Article  Google Scholar 

  • McCormac, F. G., Hogg, A. G., Blackwell, P. G., Buck, C. E., Higham, T. F. G., & Reimer, P. J. (2004). SHCal04 Southern hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon, 46(3), 1087–1092.

    Google Scholar 

  • Moore, T. C., Jr., Rea, D. K., & Godsey, H. (1998). Regional variation in modern radiocarbon ages and the hard-water effects in Lakes Michigan and Huron. Journal of Paleolimnology, 20, 347–351.

    Article  Google Scholar 

  • Mujica, E. (1978). Nueva hipotesis sobre el desarrollo temprano del altiplano del Titicaca y de sus áreas de interracción. Arte y Arqueología, 5–6, 285–308.

    Google Scholar 

  • Neira Avendaño, M. (1962). Informe preliminar de la expedición arqueológica al Altiplano. In Kontisuyo: Boletín del Museo de Arqueología e Historia (pp. 72–80). Arequipa.

  • O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20(4), 553–567. doi:10.1016/0031-9422(81)85134-5.

    Article  Google Scholar 

  • Olsson, I. U. (1992). 14C activity in different sections and chemical fractions of oak tree rings, AD 1938–1981. Radiocarbon, 34(3), 757–767.

    Google Scholar 

  • Olsson, I. U., & Osadebe, F. A. N. (1974). Carbon isotope variations and fractionation corrections in 14C dating. Boreas, 3(4), 139–146.

    Article  Google Scholar 

  • Plourde, A. M. (2006). Prestige goods are their role in the evolution of social ranking: A costly signaling model with data from the Formative Period of the Northern Lake Titicaca Basin, Peru. Ph.D. Dissertation, University of California, Los Angeles

  • Reimer, P. J., Baillie, M. G. L., Bard, E., et al. (2009). Intcal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years Cal BP. Radiocarbon, 51(4), 1111–1150.

    Google Scholar 

  • Rick, T. C., Vellanoweth, R. L., & Erlandson, J. M. (2005). Radiocarbon dating and the "old shell" problem: Direct dating of artifacts and cultural chronologies in coastal and other aquatic regions. Journal of Archaeological Science, 32(11), 1641–1648. doi:10.1016/j.jas.2005.05.005.

    Article  Google Scholar 

  • Riggs, A. C. (1984). Major carbon-14 deficiency in modern snail shells from southern Nevada Springs. Science, 224(4644), 58–61.

    Article  Google Scholar 

  • Rowe, J. H. (1942). Sitios históricos en la región de Pucará, Puno. Revista del Instituto Arqueológico, Cuzco, 6(10, 11), 66–75.

    Google Scholar 

  • Schiffer, M. B. (1986). Radiocarbon dating and the "old wood" problem: The case of the Hohokam chronology. Journal of Archaeological Science, 13(1), 13–30. doi:10.1016/0305-4403(86)90024-5.

    Article  Google Scholar 

  • Shennan, S., & Edinborough, K. (2007). Prehistoric population history: From the late glacial to the late neolithic in central and northern Europe. Journal of Archaeological Science, 34(8), 1339–1345.

    Article  Google Scholar 

  • Spencer, C. S. (1998). A mathematical model of primary state formation. Cultural Dynamics, 10(1), 5–20. doi:10.1177/092137409801000101.

    Article  Google Scholar 

  • Spencer, C. S., & Redmond, E. M. (2001). The chronology of conquest: implications of new radiocarbon analyses from the Cañada de Cuicatlán, Oaxaca. Latin American Antiquity, 12(2), 182–201.

    Article  Google Scholar 

  • Stanish, C. (2003). Ancient Titicaca: The evolution of complex society in Southern Peru and Northern Bolivia. Berkeley: University of California Press.

    Book  Google Scholar 

  • Stanish, C., & Levine, A. (2011). War and early state formation in the northern Titicaca Basin, Peru. Proceedings of the National Academy of Sciences of the United States of America, 108(34), 13901–13906. doi:10.1073/pnas.1110176108.

    Article  Google Scholar 

  • Stanish, C., & Umire, A. (2004). Prospección arqueológica del sector bajo de la cuenca del Ramis (Ríos Azángaro y Ramis), Puno. Informe Final. Lima: Instituto Nacional de Cultura.

    Google Scholar 

  • Stuiver, M., & Suess, H. E. (1966). On the relationship between radiocarbon dates and true sample ages. Radiocarbon, 8, 534–540.

    Google Scholar 

  • Stuiver, M., Reimer, P. J., Bard, et al. (1998). INTCAL98 Radiocarbon age calibration 24,000–0 cal BP. Radiocarbon, 40, 1041–1083.

    Google Scholar 

  • Taylor, R. E. (1978). Radiocarbon dating: an archaeological perspective. In G. F. Carter (Ed.), Archaeological chemistry-II (vol. 171, pp. 33–69). Washington, DC: American Chemical Society.

  • Taylor, R. E. (1987). Radiocarbon dating: An archaeological perspective. Orlando: Academic Press.

    Google Scholar 

  • Taylor, R. E. (1996). Radiocarbon dating: The continuing revolution. Evolutionary Anthropology, 4(5), 169–181.

    Article  Google Scholar 

  • Taylor, R. E. (1997). Radiocarbon dating. In R. E. Taylor & M. J. Aitken (Eds.), Chronometric dating in archaeology (pp. 65–91). New York: Plenum Press.

    Chapter  Google Scholar 

  • Taylor, R. E. (2000a). The contribution of radiocarbon dating to New World archaeology. Radiocarbon, 42(1), 1–21.

    Google Scholar 

  • Taylor, R. E. (2000b). Fifty years of radiocarbon dating. American Scientist, 88(1), 60–67.

    Article  Google Scholar 

  • Taylor, R. E., Long, A., & Kra, R. S. (1992). Radiocarbon after four decades: An interdisciplinary perspective. New York: Springer.

    Book  Google Scholar 

  • Tschopik, M. H. (1946). Some notes on the archaeology of the Department of Puno (Vol. 27, No. 3, Papers of the Peabody Museum of American Archaeology and Ethnology, Harvard University). Cambridge.

  • Ward, G. K., & Wilson, S. R. (1978). Procedures for comparing and combining radiocarbon age determinations: A critique. Archaeometry, 20(1), 19–31.

    Article  Google Scholar 

  • Whitehead, W. T. (2007). Radiocarbon dating. In M. S. Bandy & C. A. Hastorf (Eds.), Kala Uyuni: An early political center in the Southern Lake Titicaca Basin (pp. 13–17). Berkeley: Archaeological Research Facility, University of California, Berkeley.

    Google Scholar 

  • Windes, T. C., & Ford, D. (1996). The Chaco wood project: The chronometric reappraisal of Pueblo Bonito. American Antiquity, 61(2), 295–310.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the National Science Foundation, the Peruvian Ministry of Culture, and the Cotsen Institute of Archaeology of UCLA, T. Levy, J. Marcus, and R.E. Taylor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levine, A., Stanish, C. The Importance of Multiple 14C Dates from Significant Archaeological Contexts. J Archaeol Method Theory 21, 824–836 (2014). https://doi.org/10.1007/s10816-013-9177-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-013-9177-4

Keywords

Navigation