Skip to main content
Log in

Reconsidering Raw Material Selection

Skeletal Technologies and Design for Durability in Subarctic Alaska

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Raw material selection is an essential facet of technological decision making. This analysis moves beyond more typical lithic studies, investigating links between raw material selection and practical tool function by integrating data from materials science and ethnohistory with an analysis of bone and antler tools. A case study of skeletal technologies from the Alaskan subarctic offers a fresh perspective on technological strategies, especially the selection of highly durable (fracture resistant) skeletal materials to create reliable tools for use in high-risk foraging contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Material stiffness (Young’s modulus) is defined as the stress/strain ratio as a material undergoes temporary (elastic) deformation, and ultimate strength is the maximum stress a material is capable of withstanding. Toughness is a measure of the amount of energy a material can absorb before breaking. See Currey (2002) for further explanation in the context of skeletal tissues.

References

  • Albrecht, G. (1977). Testing of materials as used for bone points in the Upper Paleolithic. In H. Camps-Fabrer (Ed.), Méthodologie appliquée à l’industrie de l’os préhistorique (pp. 124–199). Paris: CNRS.

    Google Scholar 

  • Andrefsky, W. (2005). Lithics: macroscopic approaches to analysis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bamforth, D. B., & Bleed, P. (1997). Technology, flaked stone technology, and risk. In C. M. Barton & G. A. Clark (Eds.), Rediscovering Darwin: evolutionary theory and archaeological explanation (pp. 109–139). Archaeological Papers of the American Anthropological Association, No. 7. Washington: American Anthropological Association.

    Google Scholar 

  • Bettiner, R. L., Winderhalder, B., & McElreath, R. (2006). A simple model of technological intensification. Journal of Archaeological Science, 33, 538–545.

    Article  Google Scholar 

  • Betts, M. W. (2007). The Mackenzie Inuit whale bone industry: raw material, tool manufacture, scheduling and trade. Arctic, 60, 129–146.

    Google Scholar 

  • Biewener, A. A. (1982). Bone strength in small mammals and bipedal birds: do safety factors change with body size? Journal of Experimental Biology, 98, 289–301.

    Google Scholar 

  • Binford, L. R. (1977). Forty-seven trips. A case study in the character of archaeological formation processes. In R. S. V. Wright (Ed.), Stone tools as cultural markers: change, evolution and complexity (pp. 24–36). Canberra: Australian Institute of Aboriginal Studies.

    Google Scholar 

  • Birket-Smith, K. (1953). The Chugash Eskimo. Nationalmuseets Skrifter, Etnografisk Raekke VI. Copenhagen: National Museum of Denmark.

    Google Scholar 

  • Black, L. T. (1977). The Konyag (the inhabitants of the island of Kodiak) by Ioasaf [Bolotov], 1794–1799, and by Gideon, 1804–1807. Arctic Anthropology, 14, 79–108.

    Google Scholar 

  • Black, L. T. (1987). Whaling in the Aleutians. Études/ Inuit Studies, 11, 7–50.

    Google Scholar 

  • Black, L. T. (2004). Russians in Alaska 1732–1867. Fairbanks: University of Alaska Press.

    Google Scholar 

  • Bleed, P. (1986). The optimal design of hunting weapons: maintainability or reliability. American Antiquity, 51, 737–747.

    Article  Google Scholar 

  • Campbell-Malone, R. (2007). Biomechanics of North Atlantic Right Whale bone: mandibular fracture as a fatal endpoint for blunt vessel-whale collision modeling. Ph.D. thesis, Cambridge: Massachusetts Institute of Technology/Woods Hole Oceanographic Institution.

  • Carter, D. R., & Hayes, W. C. (1977). The compressive behaviour of bone as a two-phase porous material. Journal of Bone and Joint Surgery, 59A, 954–962.

    Google Scholar 

  • Clark, D. W. (1974). Contributions to the later prehistory of Kodiak Island, Alaska. Archaeological Survey of Canada Paper No. 20, Mercury Series. Ottawa: National Museums of Canada.

    Google Scholar 

  • Clark, D. W. (1975). Technological continuity and change within a persistent maritime adaptation: Kodiak Island, Alaska. In W. Fitzhugh (Ed.), Prehistoric maritime adaptations of the circumpolar zone (pp. 203–227). The Hague: Mouton.

    Google Scholar 

  • Clark, D. W. (1979). Ocean Bay: An early North Pacific maritime culture. Archaeological Survey of Canada Paper No. 86, Mercury Series. Ottawa: National Museums of Canada.

    Google Scholar 

  • Cotterell, B., & Kamminga, J. (1987). The formation of flakes. American Antiquity, 52, 675–708.

    Article  Google Scholar 

  • Crowell, A. L. (1997). Archaeology and the capitalist world system: a study from Russian America. New York: Plenum Press.

    Book  Google Scholar 

  • Crowell, A. L., Steffian, A. F., & Pullar, G. L. (Eds.). (2001). Looking both ways: heritage and identity of the Alutiiq people. Fairbanks: University of Alaska Press.

    Google Scholar 

  • Currey, J. D. (1969). Mechanical consequences of varying the mineral content of bone. Journal of Biomechanics, 2, 1–11.

    Article  Google Scholar 

  • Currey, J. D. (1979). Mechanical properties of bone tissues with greatly differing functions. Journal of Biomechanics, 12, 313–319.

    Article  Google Scholar 

  • Currey, J. D. (1988). The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. Journal of Biomechanics, 21, 131–139.

    Article  Google Scholar 

  • Currey, J. D. (2002). Bones: structure and mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Davydov, G. I. (1977). Two voyages to Russian America, 18021807, R. Pierce. (Ed.), C. Bearne (Trans.). Kingston: The Limestone Press

  • de Buffrénil, V., & Schoevaert, D. (1998). On how the periosteal bone of the delphinid humerus becomes cancellous: ontogeny of a histological specialization. Journal of Morphology, 198, 149–164.

    Article  Google Scholar 

  • de Laguna, F. (1975). The archaeology of Cook Inlet, Alaska. Anchorage: Alaska Historical Society.

    Google Scholar 

  • Ellis, C. J. (1997). Factors influencing the use of stone projectile tips: An ethnographic perspective. In H. Knecht (Ed.), Projectile Technology (pp. 37–74). New York: Plenum Press.

    Chapter  Google Scholar 

  • Felts, W. J. L., & Spurrell, F. A. (1965). Structural orientation and density in cetacean humeri. The American Journal of Anatomy, 116, 171–203.

    Article  Google Scholar 

  • Fitzhugh, B. (2003). The evolution of complex hunter-gatherers. New York: Kluwer Academic.

    Book  Google Scholar 

  • Gál, E. (2005). New data on bird bone artefacts from Hungary and Romania. In H. Luik, A. M. Choyke, C. E. Batey, & L. Lõugas (Eds.), From hooves to horns, from mollusc to mammoth (pp. 325–338). Oxford: Oxbow Books.

    Google Scholar 

  • Gelvin-Reymiller, C., & Reuther, J. (2010). Birds, needles, and iron: Late Holocene prehistoric Alaskan grooving techniques. Alaska Journal of Anthropology, 8(1), 1–22.

    Google Scholar 

  • Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Gideon, H. (1989). The round the world voyage of Hieromonk Gideon 18031809. R. A. Pierce (Ed.), L. T. Black (Trans.). Kingston, Ontario: The Limestone Press.

  • Griffitts, J. L. (2006). Bone tools and technological choice: Change and stability on the Northern Plains. Ph.D. thesis, Tucson: University of Arizona.

  • Guthrie, R. D. (1983). Osseous projectile points: Biological considerations affecting raw material selection and design among Paleolithic and Paleoindian peoples. In J. Clutton-Brock & C. Grigson (Eds.), Animals and archaeology: hunters and their prey. BAR International Series 163 (pp. 273–294). Oxford: Archaeopress.

    Google Scholar 

  • Hallén, Y. (1994). The use of bone and antler at Foshigarry and Bac Mhic Connain, two Iron Age sites on North Uist, Western Isles. Proceedings of the Society of Antiquaries of Scotland, 124, 189–231.

    Google Scholar 

  • Harrington, J. P. (1928). Exploration of the Burton Mound at Santa Barbara, California. Forty-fourth annual report of the Bureau of American Ethnology, 1926–27 (pp. 23–168). United States Government Printing Office: Washington, DC.

    Google Scholar 

  • Hayden, B., Franco, N., & Spafford, J. (1996). Evaluating lithic strategies and design criteria. In G. H. Odell (Ed.), Stone tools: theoretical insights into human prehistory (pp. 9–45). New York: Plenum Press.

    Chapter  Google Scholar 

  • Heizer, R. F. (1956). Archaeology of the Uyak Site, Kodiak Island, Alaska. Anthropological Records (17th ed., Vol. 1). Berkeley: University of California Press.

    Google Scholar 

  • Holmberg, H. J. (1985). Holmbergs ethnographic sketches. The Rasmuson Library Historical Translation Series, Vol. I. M. W. Falk, & M. W. (Eds.), F. Jaensch (Trans.). Fairbanks: University of Alaska Press.

  • Jordan, R. H., & Knecht, R. A. (1988). Archaeological research on western Kodiak Island, Alaska: The development of Koniag culture. In R. D. Shaw, R. K. Harritt, & D. E. Dumond (Eds.), The late prehistoric development of Alaska’s native people (pp. 225–306). Anchorage: Aurora IV, Alaska Anthropological Association Monograph Series.

    Google Scholar 

  • Julien, M. (1982). Les Harpons Magdaléniens. 17th Supplément á Gallia Préhistoire. Paris: CNRS.

    Google Scholar 

  • Kabel, J., van Rietbergen, B., Dalstra, M., Odgaard, A., & Huiskes, R. (1999). The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Journal of Biomechanics, 32, 673–680.

    Article  Google Scholar 

  • Keaveny, T. M., Panilla, T. P., Crawford, R. P., Kopperdahl, D. L., & Lou, A. (1997). Systematic and random error in compression testing of trabecular bone. Journal of Orthopedic Research, 15, 101–110.

    Article  Google Scholar 

  • Knecht, H. (1997). Projectile points of bone, antler, and stone: Experimental explorations of manufacture and use. In H. Knecht (Ed.), Projectile technology (pp. 191–212). New York: Plenum Press.

    Chapter  Google Scholar 

  • Knecht, R. A. (1995). The late prehistory of the Alutiiq people: Culture change on the Kodiak Archipelago from 12001750 A.D. Ph.D. thesis, Bryn Mawr: Bryn Mawr College.

  • Krzyszkowska, O. (1990). Ivory and related materials: an illustrated guide. Bulletin Supplement, University of London Institute of Classical Studies No. 59. London: Institute of Classical Studies.

    Google Scholar 

  • Lantis, M. (1952). Eskimo herdsmen: Introduction of reindeer herding to the natives of Alaska. In E. H. Spicer (Ed.), Human problems in technological change (pp. 127–148). New York: John Wiley and Sons.

    Google Scholar 

  • LeMoine, G. (1994). Use wear on bone and antler tools from the Mackenzie Delta, Northwest Territories. American Antiquity, 59, 316–334.

    Article  Google Scholar 

  • LeMoine, G. (2005). Understanding Dorset from a different perspective: Worked antler, bone, and ivory. In P. D. Sutherland (Ed.), Contributions to the study of Dorset Palaeo-Eskimos (pp. 133–144). Ottawa: Canadian Museum of Civilization.

    Google Scholar 

  • LeMoine, G., & Darwent, G. M. (1998). The walrus and the carpenter: late Dorset ivory working in the High Arctic. Journal of Archaeological Science, 25, 73–83.

    Article  Google Scholar 

  • Lipson, C., & Juvinall, R. C. (1963). Handbook of stress and strength: design and material applications. New York: The Macmillan Company.

    Google Scholar 

  • Lisiansky, U. (1968). A voyage round the world in the years 1803, 4, 5, & 6: Performed by order of His Imperial Majesty Alexander the First, Emperor of Russia, in the ship Neva. London: J. Booth.

    Google Scholar 

  • Luedtke, B. E. (1992). An archaeologist’s guide to chert and flint. Archaeological research tools 7. Los Angeles: Institute of Archaeology, University of California.

    Google Scholar 

  • Luehrmann, S. (2008). Alutiiq villages under Russian and U.S. rule. Fairbanks: University of Alaska Press.

    Google Scholar 

  • MacGregor, A. G. (1985). Bone, antler, ivory and horn—the technology of skeletal materials since the Roman period. London: Croom Helm.

    Google Scholar 

  • MacGregor, A. G., & Currey, J. D. (1983). Mechanical properties as conditioning factors in the bone and antler industry of the 3rd to the 13th century A.D. Journal of Archaeological Science, 10, 71–77.

    Article  Google Scholar 

  • Margaris, A. V. (2009). The mechanical properties of marine and terrestrial skeletal materials: implications for the organization of forager technologies. Ethnoarchaeology, 1, 163–183.

    Article  Google Scholar 

  • McCartney, A. P. (Ed.). (1979). Archaeological whale bone: A northern resource. First report of the Thule conservation project. University of Arkansas Anthropological Papers No. 1. Ottawa: National Museums of Canada and Department of Indian and Northern Affairs.

    Google Scholar 

  • McKittrick, J., Chen, P.-Y., Tombolato, L., Novitskaya, E. E., Trim, M. W., Hirata, G., et al. (2010). Energy absorbent natural materials and bioinspired design strategies: a review. Materials Science and Engineering: C, 30, 331–342.

    Google Scholar 

  • Miller, G. A. (2010). Kodiak kreol: communities of empire in early Russian America. Ithaca: Cornell University Press.

    Google Scholar 

  • Nelson, M. C. (1991). The study of technological organization. In M. B. Schiffer (Ed.), Archaeological method and theory (Vol. 3, pp. 57–100). Tucson: University of Arizona Press.

    Google Scholar 

  • Nelson, M. C. (1997). Projectile points: form, function, and design. In H. Knecht (Ed.), Projectile Technology (pp. 371–384). New York: Plenum Press.

    Chapter  Google Scholar 

  • Owen, L. R. (2005). Distorting the past: Gender and the division of labor in the European Upper Paleolithic. Tubingen: Kerns Verlag.

    Google Scholar 

  • Partlow, M. A. (2000). Salmon intensification and changing household organization in the Kodiak Archipelago. PhD thesis, Madison: University of Wisconsin.

  • Pennycuick, C. J. (1967). The strength of the pigeon’s wing bones in relation to their function. Journal of Experimental Biology, 46, 219–233.

    Google Scholar 

  • Pétillon, J.-M. (2008). First evidence of a whale-bone industry in the western European Upper Paleolithic: Magdalenian artifacts from Isturitz (Pyrénées-Atlantiques, France). Journal of Human Evolution, 54, 720–726.

    Article  Google Scholar 

  • Pétillon, J.-M., Bignon, O., Bodu, P., Cattelain, P., Debout, G., Langlais, M., et al. (2011). Hard core and cutting edge: experimental manufacture and use of Magdalenian composite projectile tips. Journal of Archaeological Science, 38, 1266–1283.

    Article  Google Scholar 

  • Pokines, J. T. (1998). Experimental replication and use of Cantabrian lower Magdalenian antler projectile points. Journal of Archaeological Science, 25, 875–886.

    Article  Google Scholar 

  • Rausch, R. L. (1969). Origin of the terrestrial mammalian fauna of the Kodiak Archipelago. In T. N. V. Karlstrom & G. E. Ball (Eds.), The Kodiak Island refugium: Its geology, flora, fauna, and history (pp. 216–234). Calgary: The Boreal Institute, University of Alberta.

    Google Scholar 

  • Rogers, D. B. (1929). Prehistoric man of the Santa Barbara coast, California. Santa Barbara: Santa Barbara Museum of Natural History.

    Google Scholar 

  • Savelle, J. (1997). The role of architectural utility in the formation of archaeological whale bone assemblages. Journal of Archaeological Science, 24, 869–885.

    Article  Google Scholar 

  • Schiffer, M. B., & Skibo, J. M. (1997). The explanation of artifact variability. American Antiquity, 62, 27–50.

    Article  Google Scholar 

  • Shahar, R., & Weiner, S. (2007). Insights into whole bone and tooth function using optical metrology. Journal of Materials Science, 42, 8919–8933.

    Article  Google Scholar 

  • Scheinsohn, V., & Ferretti, J. L. (1995). The mechanical properties of bone materials in relation to the design and function of prehistoric tools from Tierra Del Fuego, Argentina. Journal of Archaeological Science, 22, 711–717.

    Article  Google Scholar 

  • Steffian, A. F. (1992). Fifty years after Hrdlicka: Further excavation of the Uyak site, Kodiak Island, Alaska. In R. H. Jordan, F. de Laguna, & A. F. Steffian (Eds.), Contributions to the anthropology of southcentral and southwestern Alaska (pp. 141–164). Fairbanks: Anthropological Papers of the University of Alaska Vol. 24.

    Google Scholar 

  • Steffian, A. F., & Saltonstall, P. G. (2005). Tools but not toolkits: traces of the Arctic Small Tool Tradition in the Kodiak Archipelago. Alaska Journal of Anthropology, 3(2), 17–49.

    Google Scholar 

  • Stodiek, U. (2000). Preliminary results of an experimental investigation of Magdalenian antler points. In C. Bellier, P. Cattelain, & M. Otte (Eds.), La chasse dans la préhistoire/ Hunting in prehistory, SRBAP (Anthropologie et Préhistoire 111) (pp. 78–90). Bruxelles: Société Royale Belge d'Anthropologie et de Préhistoire.

    Google Scholar 

  • Torrence, R. (1989). Retooling: Towards a behavioral theory of stone tools. In R. Torrence (Ed.), Time, energy, and stone tools (pp. 57–66). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ugan, A., Bright, J., & Rogers, A. (2003). When is technology worth the trouble? Journal of Archaeological Science, 30, 1315–1329.

    Article  Google Scholar 

  • Waguespack, N. M., Surovell, T. A., Denoyer, A., Dallow, A., Savage, A., Hyneman, J., et al. (2009). Making a point: wood- versus stone-tipped projectiles. Antiquity, 83, 786–800.

    Google Scholar 

  • Wake, T. A. (1997). Bone artifacts and tool production in the native Alaskan neighborhood. In K. G. Lightfoot (Ed.), The archaeology and ethnohistory of Fort Ross, California (pp. 248–278). Berkeley: Berkeley Archaeological Research Facility.

    Google Scholar 

  • Wake, T. A. (1999). Exploitation of tradition: Bone tool production and use at Colony Ross, California. In M.-A. Dobres & C. R. Hoffman (Eds.), The social dynamics of technology: practice, politics and world views (pp. 186–208). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Wall, W. P. (1983). The correlation between high limb-bone density and aquatic habitats in recent mammals. Journal of Paleontology, 57(2), 197–207.

    Google Scholar 

  • Wegst, U. G. K., & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167–2186.

    Article  Google Scholar 

  • Whittaker, J. C. (1994). Flintknapping: making and understanding stone tools. Austin: University of Texas Press.

    Google Scholar 

  • Woodhouse-Beyer, K. E. (2001). Gender relations and socio-economic change in Russian America: An archaeological study of the Kodiak Archipelago, Alaska, 17411867. Ph.D. thesis, Providence: Brown University.

  • Yamada, H. (1970). Strength of biological materials. New York: Williams and Wilkens.

    Google Scholar 

  • Zioupos, P., Currey, J. D., Casinos, A., & de Buffrénil, V. (1997). Mechanical properties of the rostrum of the whale Mesoplodon densirostris, a remarkably dense bony tissue. Journal of Zoology, London, 241, 725–737.

    Article  Google Scholar 

Download references

Acknowledgments

I thank first and foremost the Alutiiq Museum and Archaeological Repository for providing access to collections and their continued support over many years. Jennie D. Shaw and Amy Steffian drafted the base map used here, and Amy, along with Steve Kuhn, Michael Schiffer, Jason Haugen, and three anonymous reviewers, offered shrewd and constructive comments on the manuscript. A special thanks to Mollie Callahan and Allison Davis for their technical assistance, and to William Fitzhugh, Stephen Loring, Link Olson, Charles Potter, and Kate Wynne for important cetacean conversation. Funding for this research was provided by the NSF (OPP-0424901), the University of Arizona Social and Behavioral Sciences Research Institute, and the Early American Industries Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy V. Margaris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margaris, A.V. Reconsidering Raw Material Selection. J Archaeol Method Theory 21, 669–695 (2014). https://doi.org/10.1007/s10816-012-9168-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-012-9168-x

Keywords

Navigation