Skip to main content

Advertisement

Log in

Maternal circulating exosomal miR-185-5p levels as a predictive biomarker in patients with recurrent pregnancy loss

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to explore the predictive role of microRNAs (miRNAs) from maternal serum exosomes in early recurrent pregnancy loss (RPL) and the related mechanism in early pregnancy.

Methods

Maternal serum was collected from pregnant women with RPL history or women with ongoing pregnancy (OP); serum exosomes were extracted and identified. Differentially expressed (DE) miRNAs in exosomes were screened by RNA sequencing and further validated by qRT-PCR. Next, the predictive value of exosomal miRNA and the clinical indicators for subsequent miscarriage in RPL patients were evaluated. Additionally, we verified the regulatory relationship between miR-185-5p and vascular endothelial growth factor (VEGF) in decidual natural killer (dNK) cells by overloading or inhibiting the exosomal miR-185-5p level in trophoblast cells.

Results

The miRNA sequencing revealed 43 DE miRNAs between OP and RPL patients. The five most significant DE miRNAs (miR-22-3p, miR-185-5p, miR-335-3p, miR-362-5p, and miR-378a-3p) were selected for identification, and miR-185-5p was increased in RPL patients. The area under curve (AUC) of the receiver operating characteristic was 0.925 when using miR-185-5p as a biomarker for subsequent miscarriage in RPL patients. In addition, miR-185-5p in exosomes secreted from HTR-8 cells reduces VEGF expression of dNK cells.

Conclusions

The current study, for the first time, successfully constructed the correlation between maternal circulating exosomal miR-185-5p expression pattern and RPL, which may be involved in the pathogenesis of RPL by downregulating the VEGFA of dNK cells and perturbing angiogenesis at the maternal–fetal interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data included in this article are available from the corresponding author upon reasonable request.

References

  1. Quenby S, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet. 2021;397(10285):1658–67.

    Article  CAS  PubMed  Google Scholar 

  2. Bender AR, et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):hoy004.

    Article  Google Scholar 

  3. Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2020;113(3):533–5.

    Article  Google Scholar 

  4. Schieve LA, et al. Spontaneous abortion among pregnancies conceived using assisted reproductive technology in the United States. Obstet Gynecol. 2003;101(5 Pt 1):959–67.

    PubMed  Google Scholar 

  5. Wang A, Kort J, Westphal L. Miscarriage history association with euploid embryo transfer outcomes. Reprod Biomed Online. 2019;39(4):617–23.

    Article  CAS  PubMed  Google Scholar 

  6. Bu Z, et al. Factors related to early spontaneous miscarriage during IVF/ICSI treatment: an analysis of 21,485 clinical pregnancies. Reprod Biomed Online. 2020;40(2):201–6.

    Article  PubMed  Google Scholar 

  7. Branch DW, Gibson M, Silver RM. Clinical practice recurrent miscarriage. N Engl J Med. 2010;363(18):1740–7.

    Article  CAS  PubMed  Google Scholar 

  8. Coomarasamy A, et al. Recurrent miscarriage: evidence to accelerate action. Lancet. 2021;397(10285):1675–82.

    Article  CAS  PubMed  Google Scholar 

  9. Liu XY, et al. Higher chromosomal abnormality rate in blastocysts from young patients with idiopathic recurrent pregnancy loss. Fertil Steril. 2020;113(4):853–64.

    Article  CAS  PubMed  Google Scholar 

  10. Magnus MC, et al. Role of maternal age and pregnancy history in risk of miscarriage: prospective register based study. BMJ. 2019;364:l869.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lv Y, et al. miRNA and target gene expression in menstrual endometria and early pregnancy decidua. Eur J Obstet Gynecol Reprod Biol. 2016;197:27–30.

    Article  CAS  PubMed  Google Scholar 

  12. Jairajpuri DS, et al. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene. 2021;768:145334.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, et al. Evidence that miR-133a causes recurrent spontaneous abortion by reducing HLA-G expression. Reprod Biomed Online. 2012;25(4):415–24.

    Article  CAS  PubMed  Google Scholar 

  14. Qin W, et al. Potential role of circulating microRNAs as a biomarker for unexplained recurrent spontaneous abortion. Fertil Steril. 2016;105(5):1247–1254.e3.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, et al. Circulating microRNA profile as a potential predictive biomarker for early diagnosis of spontaneous abortion in patients with subclinical hypothyroidism. Front Endocrinol (Lausanne). 2018;9:128.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vashukova ES, et al. High-throughput sequencing of circulating microRNAs in plasma and serum during pregnancy progression. Life (Basel). 2021;11(10):1055.

    CAS  PubMed  Google Scholar 

  17. Cui S, et al. Circulating microRNAs from serum exosomes as potential biomarkers in patients with spontaneous abortion. Am J Transl Res. 2021;13(5):4197–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

    Article  CAS  PubMed  Google Scholar 

  19. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):6977.

    Article  Google Scholar 

  20. Jiang L, et al. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer's disease. Med Sci Monit. 2019;25:3329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu M, et al. The exosome-derived biomarker in atherosclerosis and its clinical application. J Cardiovasc Transl Res. 2019;12(1):68–74.

    Article  PubMed  Google Scholar 

  22. Zhu T, et al. The role of exosome in autoimmune connective tissue disease. Ann Med. 2019;51(2):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsubara K, et al. Pathophysiology of preeclampsia: the role of exosomes. Int J Mol Sci. 2021;22(5):2572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ye Z, et al. Plasma exosomal miRNAs associated with metabolism as early predictor of gestational diabetes mellitus. Diabetes. 2022;71(11):2272–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, et al. Identification of endogenous controls for analyzing serum exosomal miRNA in patients with hepatitis B or hepatocellular carcinoma. Dis Markers. 2015;2015:893594.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo W, et al. Decreased human leukocyte antigen-G expression by miR-133a contributes to impairment of proinvasion and proangiogenesis functions of decidual NK cells. Front Immunol. 2017;8:741.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang X, Wei H. Role of decidual natural killer cells in human pregnancy and related pregnancy complications. Front Immunol. 2021;12:728291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma Y, et al. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci. 2016;151:174–81.

    Article  CAS  PubMed  Google Scholar 

  29. Ostling H, et al. Placental expression of microRNAs in infants born small for gestational age. Placenta. 2019;81:46–53.

    Article  CAS  PubMed  Google Scholar 

  30. Luo L, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting nodal. J Cell Sci. 2012;125(Pt 13):3124–32.

    CAS  PubMed  Google Scholar 

  31. Sun Y, et al. Identification of differentially expressed miRNAs in serum extracellular vesicles (EVs) of Kazakh sheep at early pregnancy. Reprod Domest Anim. 2021;56(5):713–24.

    Article  CAS  PubMed  Google Scholar 

  32. Yadava SM, et al. miR-15b-5p promotes expression of proinflammatory cytokines in human placenta by inhibiting Apelin signaling pathway. Placenta. 2021;104:8–15.

    Article  CAS  PubMed  Google Scholar 

  33. Tang XW, Qin QX. miR-335-5p induces insulin resistance and pancreatic islet beta-cell secretion in gestational diabetes mellitus mice through VASH1-mediated TGF-beta signaling pathway. J Cell Physiol. 2019;234(5):6654–66.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Zhao D. MicroRNA-362-5p promotes the proliferation and inhibits apoptosis of trophoblast cells via targeting glutathione-disulfide reductase. Bioengineered. 2021;12(1):2410–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. DeVilbiss EA, et al. Prediction of pregnancy loss by early first trimester ultrasound characteristics. Am J Obstet Gynecol. 2020;223(2):242.e1–242.e22.

    Article  CAS  PubMed  Google Scholar 

  36. Puget C, et al. Serial hCG and progesterone levels to predict early pregnancy outcomes in pregnancies of uncertain viability: a prospective study. Eur J Obstet Gynecol Reprod Biol. 2018;220:100–5.

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, et al. The clinical value of 3D ultrasonic measurement of the ratio of gestational sac volume to embryo volume in IoT-based prediction of pregnancy outcome. J Healthc Eng. 2021;2021:6421025.

    PubMed  PubMed Central  Google Scholar 

  38. Wei J, Zhao Y. MiR-185-5p protects against angiogenesis in polycystic ovary syndrome by targeting VEGFA. Front Pharmacol. 2020;11:1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Z, et al. The possible role of visceral fat in early pregnancy as a predictor of gestational diabetes mellitus by regulating adipose-derived exosomes miRNA-148 family: protocol for a nested case-control study in a cohort study. BMC Pregnancy Childbirth. 2021;21(1):262.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang Q, et al. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat Commun. 2017;8(1):918.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Griebel CP, et al. Management of spontaneous abortion. Am Fam Physician. 2005;72(7):1243–50.

    PubMed  Google Scholar 

  42. Pillai RN, et al. Role of serum biomarkers in the prediction of outcome in women with threatened miscarriage: a systematic review and diagnostic accuracy meta-analysis. Hum Reprod Update. 2016;22(2):228–39.

    CAS  PubMed  Google Scholar 

  43. Xu N, et al. Integrative analysis of circulating microRNAs and the placental transcriptome in recurrent pregnancy loss. Front Physiol. 2022;13:893744.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bruno V, et al. Low molecular weight heparin-induced miRNA changes in peripheral blood mononuclear cells in pregnancies with unexplained recurrent pregnancy loss. J Reprod Immunol. 2022;151:103502.

    Article  CAS  PubMed  Google Scholar 

  45. Sebastiani G, et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J Endocrinol Invest. 2017;40(6):591–610.

    Article  CAS  PubMed  Google Scholar 

  46. Yuan Q, et al. MiR-185-5p ameliorates endoplasmic reticulum stress and renal fibrosis by downregulation of ATF6. Lab Invest. 2020;100(11):1436–46.

    Article  CAS  PubMed  Google Scholar 

  47. Gerbaud P, Tasken K, Pidoux G. Spatiotemporal regulation of cAMP signaling controls the human trophoblast fusion. Front Pharmacol. 2015;6:202.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Saha B, et al. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: an implication in early human pregnancy loss. Proc Natl Acad Sci U S A. 2020;117(30):17864–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferrara N, et al. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev. 1992;13(1):18–32.

    Article  CAS  PubMed  Google Scholar 

  50. Liu Y, et al. Decidual natural killer cells: a good nanny at the maternal-fetal interface during early pregnancy. Front Immunol. 2021;12:663660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou G, et al. miR-219a suppresses human trophoblast cell invasion and proliferation by targeting vascular endothelial growth factor receptor 2 (VEGFR2). J Assist Reprod Genet. 2021;38(2):461–70.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dubinsky V, et al. Role of regulatory and angiogenic cytokines in invasion of trophoblastic cells. Am J Reprod Immunol. 2010;63(3):193–9.

    Article  CAS  PubMed  Google Scholar 

  53. Cabar FR, et al. Vascular endothelial growth factor and beta-human chorionic gonadotropin are associated with trophoblastic invasion into the tubal wall in ectopic pregnancy. Fertil Steril. 2010;94(5):1595–600.

    Article  CAS  PubMed  Google Scholar 

  54. An HJ, et al. 3'-UTR polymorphisms in the vascular endothelial growth factor gene (VEGF) contribute to susceptibility to recurrent pregnancy loss (RPL). Int J Mol Sci. 2019;20(13):3319. https://doi.org/10.3390/ijms20133319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Z, et al. Placental angiogenesis in mammals: a review of the regulatory effects of signaling pathways and functional nutrients. Adv Nutr. 2021;12(6):2415–34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis III. Changes in complicated pregnancies. Placenta. 2004;25(2-3):127–39.

    Article  CAS  PubMed  Google Scholar 

  57. Andraweera PH, Dekker GA, Roberts CT. The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum Reprod Update. 2012;18(4):436–57.

    Article  CAS  PubMed  Google Scholar 

  58. Bagheri A, et al. Association of angiogenic cytokines (VEGF-A and VEGF-C) and clinical characteristic in women with unexplained recurrent miscarriage. Bratisl Lek Listy. 2017;118(5):258–64.

    CAS  PubMed  Google Scholar 

  59. Scarpellini F, et al. Immunohistochemical study on the expression of G-CSF, G-CSFR, VEGF, VEGFR-1, Foxp3 in first trimester trophoblast of recurrent pregnancy loss in pregnancies treated with G-CSF and controls. Int J Mol Sci. 2019;21(1):285.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ying X, et al. Exosomes released from decidual macrophages deliver miR-153-3p, which inhibits trophoblastic biological behavior in unexplained recurrent spontaneous abortion. Int Immunopharmacol. 2020;88:106981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the individuals who participated in the research. We are very grateful to nurse Rong Zhang for helping to coordinate the collection of samples and data. We thank the National Natural Science Foundation of China for supporting this project. We thank John Myers‍ at AJE for editing the language of this manuscript.

Funding

This research was supported by a grant from the National Natural Science Foundation of China (No. 81871182).

Author information

Authors and Affiliations

Authors

Contributions

Y.J.X., Z.F., J.D., S.Q.C., and X.H.W. contributed to conceiving and designing the study and to data acquisition. W.L.Z. and L.H. contributed to sample acquisition and article revision. Y.J.X., J.Q.M., J.Z. Z.F., J.D., and X.H.W contributed to data analysis, data interpretation, and drafting and revising the article. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Xiaohong Wang.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Tangdu Hospital Ethics Committee (code no. TDLL2018-03-39). Informed consents were acquired from all subjects involved in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1:

Supplemental Table 1. List of the miRNA/mRNA PCR primers for real-time PCR

ESM 2:

Supplemental Fig. 1 Identification of isolated dNK cells. Flow cytometry was performed to identify the density of CD3-CD56+ dNK cells before and after sorting. Supplemental Fig. 2 Principal component analysis (PCA) plot of DE miRNAs between 4 RPL patients and 5 OP women. Supplemental Fig. 3 Comparison of the expression levels of miR-185-5p among the RPL group and the OP subgroups. (a) Relative expression of miR-185-5p in the OP1 group (patients who maintained a pregnancy without RPL history) and OP2 group (patients who maintained a pregnancy with RPL history). (b) Relative expression of miR-185-5p in the OP1 group and RPL group. (c) Relative expression of miR-185-5p in the OP2 group and RPL group, **** P<0.0001, Mann–Whitney U test was used.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Fang, Z., Dong, J. et al. Maternal circulating exosomal miR-185-5p levels as a predictive biomarker in patients with recurrent pregnancy loss. J Assist Reprod Genet 40, 553–566 (2023). https://doi.org/10.1007/s10815-023-02733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02733-y

Keywords

Navigation