Skip to main content

Advertisement

Log in

Recombinant human chorionic gonadotropin and gonadotropin-releasing hormone agonist differently affect the profile of extracellular vesicle microRNAs in human follicular fluid

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract 

Purpose

To compare the expression profile of extracellular vesicle microRNAs (EV-miRNAs) derived from follicular fluid after a trigger with recombinant human chorionic gonadotropin (r-hCG) or with a gonadotropin-releasing hormone GnRH agonist (GnRH-a) for final oocyte maturation.

Methods

A retrospective analysis of a prospective cohort. Women undergoing in vitro fertilization at a tertiary university-affiliated hospital were recruited between 2014 and 2016. EV-miRNAs were extracted from the follicular fluid of a single follicle, and their expression was assessed using TaqMan Open Array®. Genes regulated by EV-miRNAs were analyzed using miRWalk2.0 Targetscan database, DAVID Bioinformatics Resources, Kyoto-Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO).

Results

Eighty-two women were included in the r-hCG trigger group and 9 in the GnRH-a group. Of 754 EV-miRNAs screened, 135 were detected in at least 50% of the samples and expressed in both groups and were further analyzed. After adjusting for multiple testing, 41 EV-miRNAs whose expression levels significantly differed between the two trigger groups were identified. Bioinformatics analysis of the genes regulated by these EV-miRNAs showed distinct pathways between the two triggers, including TGF-beta signaling, cell cycle, and Wnt signaling pathways. Most of these pathways regulate cascades associated with apoptosis, embryo development, implantation, decidualization, and placental development.

Conclusions

Trigger with GnRH-a or r-hCG leads to distinct EV-miRNAs expression profiles and to downstream biological effects in ovarian follicles. These findings may provide an insight for the increased apoptosis and the lower implantation rates following GnRH-a trigger vs. r-hCG in cases lacking intensive luteal phase support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References 

  1. Engmann L, Benadiva C, Humaidan P. GnRH agonist trigger for the induction of oocyte maturation in GnRH antagonist IVF cycles: a SWOT analysis. Reprod Biomed Online. 2016;32(3):274–85.

    Article  CAS  PubMed  Google Scholar 

  2. Humaidan P, Engmann L, Benadiva C. Luteal phase supplementation after gonadotropin-releasing hormone agonist trigger in fresh embryo transfer: the American versus European approaches. Fertil Steril. 2015;103(4):879–85.

    Article  CAS  PubMed  Google Scholar 

  3. Kol S. Luteolysis induced by a gonadotropin-releasing hormone agonist is the key to prevention of ovarian hyperstimulation syndrome. Fertil Steril. 2004;81(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  4. Pereira N, Kelly AG, Stone LD, Witzke JD, Lekovich JP, Elias RT, et al. Gonadotropin-releasing hormone agonist trigger increases the number of oocytes and embryos available for cryopreservation in cancer patients undergoing ovarian stimulation for fertility preservation. Fertil Steril. 2017;108(3):532–8.

    Article  CAS  PubMed  Google Scholar 

  5. Reddy J, Turan V, Bedoschi G, Moy F, Oktay K. Triggering final oocyte maturation with gonadotropin-releasing hormone agonist (GnRHa) versus human chorionic gonadotropin (hCG) in breast cancer patients undergoing fertility preservation: an extended experience. J Assist Reprod Genet. 2014;31(7):927–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Casper RF. A case for the gonadotropin-releasing hormone-agonist trigger in every freeze-all cycle? Fertil Steril. 2019;112(2):228–9.

    Article  PubMed  Google Scholar 

  7. Dosouto C, Haahr T, Humaidan P. Gonadotropin-releasing hormone agonist (GnRHa) trigger - state of the art. Reprod Biol. 2017;17(1):1–8.

    Article  PubMed  Google Scholar 

  8. Andronico F, Battaglia R, Ragusa M, Barbagallo D, Purrello M, Di Pietro C. Extracellular vesicles in human oogenesis and implantation. Int J Mol Sci. 2019 May 1;20(9):2162. https://doi.org/10.3390/ijms20092162.

  9. Hailay T, Hoelker M, Poirier M, Gebremedhn S, Rings F, Saeed-Zidane M, et al. Extracellular vesicle-coupled miRNA profiles in follicular fluid of cows with divergent post-calving metabolic status. Sci Rep. 2019;9(1):12851.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34(4):525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martinez RM, Baccarelli AA, Liang L, Dioni L, Mansur A, Adir M, et al. Body mass index in relation to extracellular vesicle-linked microRNAs in human follicular fluid. Fertil Steril. 2019;112(2):387-96 e3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Machtinger R, Gaskins AJ, Racowsky C, Mansur A, Adir M, Baccarelli AA, et al. Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes. Environ Int. 2018;111:23–31.

    Article  CAS  PubMed  Google Scholar 

  13. Witwer KW, Buzas EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013 May 27;2. https://doi.org/10.3402/jev.v2i0.20360. eCollection 2013.

  14. Pergoli L, Cantone L, Favero C, Angelici L, Iodice S, Pinatel E, et al. Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Part Fibre Toxicol. 2017;14(1):32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8(1):17036.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):1149–60.

    Article  PubMed  Google Scholar 

  17. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE. 2018;13(10):e0206239.

    Article  PubMed  PubMed Central  Google Scholar 

  18. McGeary SE, Lin KS, Shi CY, Pham TM, Bisaria N, Kelley GM, et al. The biochemical basis of microRNA targeting efficacy. 2019 Dec 20;366(6472):eaav1741. https://doi.org/10.1126/science.aav1741.

  19. Chen X, Xie M, Liu D, Shi K. Downregulation of microRNA146a inhibits ovarian granulosa cell apoptosis by simultaneously targeting interleukin1 receptorassociated kinase and tumor necrosis factor receptorassociated factor 6. Mol Med Rep. 2015;12(4):5155–62.

    Article  CAS  PubMed  Google Scholar 

  20. Hong L, Peng S, Li Y, Fang Y, Wang Q, Klausen C, et al. miR-106a increases granulosa cell viability and is downregulated in women with diminished ovarian reserve. J Clin Endocrinol Metab. 2018;103(6):2157–66.

    Article  PubMed  Google Scholar 

  21. Lin F, Li R, Pan ZX, Zhou B, Yu DB, Wang XG, et al. miR-26b promotes granulosa cell apoptosis by targeting ATM during follicular atresia in porcine ovary. PLoS ONE. 2012;7(6):e38640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Du X, Zhou J, Pan Z, Liu H, Li Q. MicroRNA-26b functions as a proapoptotic factor in porcine follicular Granulosa cells by targeting Sma-and Mad-related protein 4. Biol Reprod. 2014;91(6):146.

    Article  PubMed  Google Scholar 

  23. Liu J, Tu F, Yao W, Li X, Xie Z, Liu H, et al. Conserved miR-26b enhances ovarian granulosa cell apoptosis through HAS2-HA-CD44-caspase-3 pathway by targeting HAS2. Sci Rep. 2016;6:21197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tu F, Pan ZX, Yao Y, Liu HL, Liu SR, Xie Z, et al. miR-34a targets the inhibin beta B gene, promoting granulosa cell apoptosis in the porcine ovary. Genet Mol Res. 2014;13(2):2504–12.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Bu Q, Zeng M, Xia D, Wu A. MicroRNA-93 promotes bladder cancer proliferation and invasion by targeting PEDF. Urol Oncol. 2019;37(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  26. Machtinger R, Baccarelli AA, Wu H. Extracellular vesicles and female reproduction. J Assist Reprod Genet. 2021;38(3):549–57.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22(2):182–93.

    CAS  PubMed  Google Scholar 

  28. Qamar AY, Mahiddine FY, Bang S, Fang X, Shin ST, Kim MJ, et al. Extracellular vesicle mediated crosstalk between the gametes, conceptus, and female reproductive tract. Front Vet Sci. 2020;7:589117.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Santonocito M, Vento M, Guglielmino MR, Battaglia R, Wahlgren J, Ragusa M, et al. Molecular characterization of exosomes and their microRNA cargo in human follicular fluid: bioinformatic analysis reveals that exosomal microRNAs control pathways involved in follicular maturation. Fertil Steril. 2014;102(6):1751-61 e1.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Xu Y, Liu H, Pan Z. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reprod Biol Endocrinol. 2019;17(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonen N, Casper RF, Jurisicova A, Yung Y, Friedman-Gohas M, Orvieto R, et al. Does gonadotropin-releasing hormone agonist cause luteolysis by inducing apoptosis of the human granulosa-luteal cells? J Assist Reprod Genet. 2021 Sep;38(9):2301–2305. https://doi.org/10.1007/s10815-021-02226-w.

  32. Miller I, Chuderland D, Grossman H, Ron-El R, Ben-Ami I, Shalgi R. The dual role of PEDF in the pathogenesis of OHSS: negating both angiogenic and inflammatory pathways. J Clin Endocrinol Metab. 2016;101(12):4699–709.

    Article  CAS  PubMed  Google Scholar 

  33. Miller I, Chuderland D, Ron-El R, Shalgi R, Ben-Ami I. GnRH agonist triggering modulates PEDF to VEGF ratio inversely to hCG in granulosa cells. J Clin Endocrinol Metab. 2015;100(11):E1428–36.

    Article  CAS  PubMed  Google Scholar 

  34. Ghaebi M, Abdolmohammadi-Vahid S, Ahmadi M, Eghbal-Fard S, Dolati S, Nouri M, et al. T cell subsets in peripheral blood of women with recurrent implantation failure. J Reprod Immunol. 2019;131:21–9.

    Article  CAS  PubMed  Google Scholar 

  35. Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci. 2015;128(4):804–14.

    CAS  PubMed  Google Scholar 

  36. Liu X, Zhao H, Li W, Bao H, Qu Q, Ma D. Up-regulation of miR-145 may contribute to repeated implantation failure after IVF-embryo transfer by targeting PAI-1. Reprod Biomed Online. 2020;40(5):627–36.

    Article  CAS  PubMed  Google Scholar 

  37. Revel A, Achache H, Stevens J, Smith Y, Reich R. MicroRNAs are associated with human embryo implantation defects. Hum Reprod. 2011;26(10):2830–40.

    Article  CAS  PubMed  Google Scholar 

  38. Shekibi M, Heng S, Nie G. MicroRNAs in the regulation of endometrial receptivity for embryo implantation. Int J Mol Sci. 2022; Jun 1;23(11):6210. https://doi.org/10.3390/ijms23116210.

  39. Liu L, Wang Y, Yu Q. The PI3K/Akt signaling pathway exerts effects on the implantation of mouse embryos by regulating the expression of RhoA. Int J Mol Med. 2014;33(5):1089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fabi F, Grenier K, Parent S, Adam P, Tardif L, Leblanc V, et al. Regulation of the PI3K/Akt pathway during decidualization of endometrial stromal cells. PLoS ONE. 2017;12(5):e0177387.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hemmings BA, Restuccia DF. PI3K-PKB/Akt pathway. Cold Spring Harb Perspect Biol. 2012;4(9):a011189.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Burghardt RC, Johnson GA, Jaeger LA, Ka H, Garlow JE, Spencer TE, et al. Integrins and extracellular matrix proteins at the maternal-fetal interface in domestic animals. Cells Tissues Organs. 2002;172(3):202–17.

    Article  CAS  PubMed  Google Scholar 

  43. Jones RL, Stoikos C, Findlay JK, Salamonsen LA. TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction. 2006;132(2):217–32.

    Article  CAS  PubMed  Google Scholar 

  44. Kaneko Y, Lecce L, Day ML, Murphy CR. Focal adhesion kinase localizes to sites of cell-to-cell contact in vivo and increases apically in rat uterine luminal epithelium and the blastocyst at the time of implantation. J Morphol. 2012;273(6):639–50.

    Article  CAS  PubMed  Google Scholar 

  45. Bazer FW, Song G, Kim J, Erikson DW, Johnson GA, Burghardt RC, et al. Mechanistic mammalian target of rapamycin (MTOR) cell signaling: effects of select nutrients and secreted phosphoprotein 1 on development of mammalian conceptuses. Mol Cell Endocrinol. 2012;354(1–2):22–33.

    Article  CAS  PubMed  Google Scholar 

  46. Nishioka N, Yamamoto S, Kiyonari H, Sato H, Sawada A, Ota M, et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech Dev. 2008;125(3–4):270–83.

    Article  CAS  PubMed  Google Scholar 

  47. Soncin F, Parast MM. Role of Hippo signaling pathway in early placental development. Proc Natl Acad Sci U S A. 2020;117(34):20354–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sonderegger S, Pollheimer J, Knofler M. Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta. 2010;31(10):839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Orvieto R. Intensive luteal-phase support with oestradiol and progesterone after GnRH-agonist triggering: does it help? Reprod Biomed Online. 2012;24(6):680–1 (author reply 2-3).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Environmental Health Sciences R21 ES024236/ES/NIEHS NIH HHS/United States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Machtinger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 32 KB)

Supplementary file2 (DOCX 589 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machtinger, R., Racowsky, C., Baccarelli, A.A. et al. Recombinant human chorionic gonadotropin and gonadotropin-releasing hormone agonist differently affect the profile of extracellular vesicle microRNAs in human follicular fluid. J Assist Reprod Genet 40, 527–536 (2023). https://doi.org/10.1007/s10815-022-02703-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02703-w

Keywords

Navigation