Skip to main content

Advertisement

Log in

Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the association between the DNA methylation of specific genes and sperm DNA integrity status in human sperm samples.

Methods

A total of 166 semen samples were evaluated (86 controls and 80 cases with impaired sperm DNA integrity). We detected the methylation status of 257 CpG sites among two imprinted genes (H19 and SNRPN) and four non-imprinted genes related to male infertility (MTHFR, GSTM1, DAZL, and CREM) by using a targeted next-generation sequencing method.

Results

Differential methylation was found in 43 CpG sites of the promoters of the six candidate genes. H19, SNRPN, MTHFR, DAZL, GSTM1, and CREM contained 22, 12, 1, 4, 0, and 4 differentially methylated CpG sites (P<0.05), respectively. The imprinting genes were associated with relatively higher rates of differentially methylated CpG sites (28.21% in H19 and 41.38% in SNRPN) than the non-imprinting genes. One CpG site in H19 remained significant after performing strict Bonferroni correction.

Conclusion

In this study, we found that different site-specific DNA methylation signatures were correlated with sperm DNA integrity status. Further studies are needed to investigate the specific mechanisms leading to the epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krausz C, Chianese C. Genetic testing and counselling for male infertility. Curr Opin Endocrinol Diabetes Obes. 2014;21(3):244–50.

    Article  PubMed  Google Scholar 

  2. Cox GF, Bürger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet. 2002;71(1):162–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet. 2003;72(5):1338–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics. 2019;11(1):162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Marques CJ, Carvalho F, Sousa M, Barros A. Genomic imprinting in disruptive spermatogenesis. Lancet. 2004;363(9422):1700–2.

    Article  CAS  PubMed  Google Scholar 

  6. Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, et al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell. 2011;146(6):1029–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  8. Dietz S, Lifshitz A, Kazdal D, Harms A, Endris V, Winter H, et al. Global DNA methylation reflects spatial heterogeneity and molecular evolution of lung adenocarcinomas. Int J Cancer. 2019;144(5):1061–72.

    Article  CAS  PubMed  Google Scholar 

  9. Aston KI, Punj V, Liu L, Carrell DT. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertil Steril. 2012;97(2):285–92.

    Article  CAS  PubMed  Google Scholar 

  10. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.

    Article  CAS  PubMed  Google Scholar 

  12. Montjean D, Zini A, Ravel C, Belloc S, Dalleac A, Copin H, et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology. 2015;3(2):235–40.

    Article  CAS  PubMed  Google Scholar 

  13. Laqqan M, Ahmed I, Yasin M, Hammadeh ME, Yassin M. Influence of variation in global sperm DNA methylation level on the expression level of protamine genes and human semen parameters. Andrologia. 2020;52(1):e13484.

    PubMed  Google Scholar 

  14. Benchaib M, Braun V, Ressnikof D, Lornage J, Durand P, Niveleau A, et al. Influence of global sperm DNA methylation on IVF results. Hum Reprod. 2005;20(3):768–73.

    Article  CAS  PubMed  Google Scholar 

  15. Urdinguio RG, Bayón GF, Dmitrijeva M, Toraño EG, Bravo C, Fraga MF, et al. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015;30(5):1014–28.

    Article  CAS  PubMed  Google Scholar 

  16. Kushaan K, Sanketa R, Sharvari D, Sweta M, Shobha S, Reshma G, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36(1):48–60.

  17. James E, Jenkins TG. Epigenetics, infertility, and cancer: future directions. Fertil Steril. 2018;109(1):27–32.

    Article  PubMed  Google Scholar 

  18. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20(6):840–52.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng HY, Tang Y, Niu J, Li P, Ye DS, Chen X, et al. Aberrant DNA methylation of imprinted loci in human spontaneous abortions after assisted reproduction techniques and natural conception. Hum Reprod. 2013;28(1):265–73.

    Article  CAS  PubMed  Google Scholar 

  20. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet. 2007;16(21):2542–51.

    Article  CAS  PubMed  Google Scholar 

  21. Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695–703.

    Article  CAS  PubMed  Google Scholar 

  22. Khazamipour N, Noruzinia M, Fatehmanesh P, Keyhanee M, Pujol P. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod. 2009;24(9):2361–4.

    Article  CAS  PubMed  Google Scholar 

  23. Karaca MZ, Konac E, Yurteri B, Bozdag G, Sogutdelen E, Bilen CY. Association between methylenetetrahydrofolate reductase (MTHFR) gene promoter hypermethylation and the risk of idiopathic male infertility. Andrologia. 2017;49(7).

  24. Nanassy L, Carrell DT. Abnormal methylation of the promoter of CREM is broadly associated with male factor infertility and poor sperm quality but is improved in sperm selected by density gradient centrifugation. Fertil Steril. 2011;95(7):2310–4.

    Article  CAS  PubMed  Google Scholar 

  25. Navarro-Costa P, Nogueira P, Carvalho M, Leal F, Cordeiro I, Calhaz-Jorge C, et al. Incorrect DNA methylation of the DAZL promoter CpG island associates with defective human sperm. Hum Reprod. 2010;25(10):2647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kolesnikova LI, Kurashova NA, Bairova TA, Dolgikh MI, Ershova OA, Dashiev BG, et al. Role of glutathione-S-transferase family genes in male infertility. Bull Exp Biol Med. 2017;163(5):643–5.

    Article  CAS  PubMed  Google Scholar 

  27. Ioannou D, Miller D, Griffin DK, Tempest HG. Impact of sperm DNA chromatin in the clinic. J Assist Reprod Genet. 2016;33(2):157–66.

    Article  PubMed  Google Scholar 

  28. Esteves SC, Santi D, Simoni M. An update on clinical and surgical interventions to reduce sperm DNA fragmentation in infertile men. Andrology. 2020;8(1):53–81.

    Article  PubMed  Google Scholar 

  29. Khezri A, Narud B, Stenseth EB, Johannisson A, Myromslien FD, Gaustad AH, et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics. 2019;20(1):897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM, et al. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231–45.

    Article  PubMed  Google Scholar 

  31. Evenson DP. Sperm chromatin structure assay (SCSA®). Methods Mol Biol. 2013;927:147–64.

    Article  CAS  PubMed  Google Scholar 

  32. Evenson D, Jost L. Sperm chromatin structure assay is useful for fertility assessment. Methods Cell Sci. 2000;22(2–3):169–89.

    Article  CAS  PubMed  Google Scholar 

  33. Shang X, Chen L, Xia X, Liu D. Consensus of Chinese Experts on male reproductive genetics testing. Zhonghua Nan Ke Xue. 2015;21(12):1138–42.

    Google Scholar 

  34. Lees-Murdock DJ, Walsh CP. DNA methylation reprogramming in the germ line. Adv Exp Med Biol. 2008;626:1–15.

    Article  CAS  PubMed  Google Scholar 

  35. Ibrahaim Y, Hotaling J. Sperm epigenetics and its impact on male fertility, pregnancy loss, and somatic health of future offsprings. Semin Reprod Med. 2018;36(03/04):233–5.

    PubMed  Google Scholar 

  36. Peng H, Zhao P, Liu J, Zhang J, Zhang J, Wang Y, et al. Novel epigenomic biomarkers of male infertility identified by methylation patterns of CpG sites within imprinting control regions of H19 and SNRPN genes. Omics. 2018;22(5):354–64.

    Article  CAS  PubMed  Google Scholar 

  37. Laqqan M, Solomayer EF, Hammadeh M. Aberrations in sperm DNA methylation patterns are associated with abnormalities in semen parameters of subfertile males. Reprod Biol. 2017;17(3):246–51.

    Article  PubMed  Google Scholar 

  38. Boeri L, Capogrosso P, Ventimiglia E, et al. Heavy cigarette smoking and alcohol consumption are associated with impaired sperm parameters in primary infertile men. Asian J Androl. 2019;21:478–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma R, Agarwal A, Harlev A, Esteves SC. A meta-analysis to study the effects of body mass index on sperm DNA fragmentation index in reproductive age men. Fertil Steril. 2017;108:e138–9.

    Article  Google Scholar 

  40. Sharma P, Ghanghas P, Kaushal N, Kaur J, Kaur P. Epigenetics and oxidative stress: a twin-edged sword in spermatogenesis. Andrologia. 2019;51(11):e13432.

    Article  PubMed  Google Scholar 

  41. Hu W, Chen M, Wu W, Lu J, Zhao D, Pan F, et al. Gene-gene and gene-environment interactions on risk of male infertility: focus on the metabolites. Environ Int. 2016;91:188–95.

    Article  CAS  PubMed  Google Scholar 

  42. Barati E, Nikzad H, Karimian M. Oxidative stress and male infertility: current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell Mol Life Sci. 2020;77(1):93–113.

    Article  CAS  PubMed  Google Scholar 

  43. Bui AD, Sharma R, Henkel R, Agarwal A. Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia. 2018;50(8):e13012.

    Article  CAS  PubMed  Google Scholar 

  44. Wu Q, Ni X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets. 2015;16(1):13–9.

    Article  PubMed  CAS  Google Scholar 

  45. Bertoncelli Tanaka M, Agarwal A, Esteves SC. Paternal age and assisted reproductive technology: problem solver or trouble maker? Panminerva Med. 2019;61(2):138–51.

    Article  PubMed  Google Scholar 

  46. Guillaumet-Adkins A, Yañez Y, Peris-Diaz MD, Calabria I, Palanca-Ballester C, Sandoval J. Epigenetics and oxidative stress in aging. Oxidative Med Cell Longev. 2017;2017(4824):9175806.

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Huang Nali from Sinotech Genomics (Shanghai, China) for her kind help in the statistical analysis. We thank Genesky Biotechnologies Inc. (Shanghai, China) for all the scientific support.

Funding

This work was supported by the Foundation of the Education Department of Anhui Province (KJ2019A0286) and Key Research and Development Plan of Anhui Province (202004j07020032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojin He or Yunxia Cao.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Ethical Review Board of The First Affiliated Hospital of Anhui Medical University and was conducted according to the Declaration of Helsinki principles (PJ2020-03-13). Written informed consents were obtained from all enrolled patients.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Wang, C., Chen, Y. et al. Sperm DNA integrity status is associated with DNA methylation signatures of imprinted genes and non-imprinted genes. J Assist Reprod Genet 38, 2041–2048 (2021). https://doi.org/10.1007/s10815-021-02157-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-021-02157-6

Keywords

Navigation