Skip to main content
Log in

Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Elevated oxidative stress has been proposed as an important factor in the pathogenesis of polycystic ovary syndrome (PCOS)-related infertility. Our study was aimed at simultaneously exploring local and systemic oxidative stress in PCOS individuals and its relationship with embryo quality.

Methods

We recruited 86 PCOS cases and 60 controls. Five representative oxidative stress markers, namely, total oxidant capacity (TOC), total antioxidant capacity (TAC), malonaldehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD), were measured in both follicular fluid (FF) and serum.

Results

Women with PCOS compared to normal controls had higher levels of TOC in both FF (10.13 ± 2.68 vs.7.03 ± 2.45, P < 0.001) and serum (11.76 ± 2.92 vs. 8.82 ± 2.57, P < 0.001). The oxidative stress index (OSI, the ratio of TOC to TAC) was also higher in PCOS cases. They were still significant after BMI adjustment (Padj<0.01). In addition, the serum OSI level was much higher than the FF OSI level in both groups. Correlation analysis showed that the FF and serum TOC were negatively correlated with the high-quality embryo rate on day 3 and the later blastocyst formation rate in the PCOS group (P < 0.05). The correlation coefficient was higher in FF. Moreover, as the regression analysis data showed, the FF MDA level was significantly associated with embryo quality indicators (P < 0.05).

Conclusions

PCOS was accompanied by elevated oxidative stress in both serum and FF. Even though serum oxidative stress was severe, the study suggested that FF oxidative stress contributed more to embryo quality, to which we should give more attention in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zuo T, Zhu M, Xu W. Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxidative Med Cell Longev. 2016;2016:8589318–4. https://doi.org/10.1155/2016/8589318.

    Article  CAS  Google Scholar 

  2. Glasauer A, Chandel NS. Ros. Curr Biol. 2013;23(3):R100–2. https://doi.org/10.1016/j.cub.2012.12.011.

    Article  CAS  PubMed  Google Scholar 

  3. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37. https://doi.org/10.1093/humupd/dms030.

    Article  CAS  PubMed  Google Scholar 

  4. Gerber PA, Rutter GA. The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid Redox Signal. 2017;26(10):501–18. https://doi.org/10.1089/ars.2016.6755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther. 2018;181:169–82. https://doi.org/10.1016/j.pharmthera.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  6. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411–8. https://doi.org/10.1253/circj.cj-08-1102.

    Article  CAS  PubMed  Google Scholar 

  7. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2005;3:28. https://doi.org/10.1186/1477-7827-3-28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84. https://doi.org/10.1038/nrendo.2018.24.

    Article  PubMed  Google Scholar 

  9. Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N, et al. Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 2012;33(5):812–41. https://doi.org/10.1210/er.2012-1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63. https://doi.org/10.1093/humupd/dmq001.

    Article  CAS  PubMed  Google Scholar 

  11. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16. https://doi.org/10.1016/j.fertnstert.2014.11.015.

    Article  PubMed  Google Scholar 

  12. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004.

  13. Lambalk CB, Banga FR, Huirne JA, Toftager M, Pinborg A, Homburg R, et al. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type. Hum Reprod Update. 2017;23(5):560–79. https://doi.org/10.1093/humupd/dmx017.

    Article  CAS  PubMed  Google Scholar 

  14. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem. 2005;38(12):1103–11. https://doi.org/10.1016/j.clinbiochem.2005.08.008.

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Shi Y, Cui Y, Ma J, Che L, Chen ZJ. Endocrine and metabolic characteristics of polycystic ovary syndrome in Chinese women with different phenotypes. Clin Endocrinol. 2012;76(3):425–30. https://doi.org/10.1111/j.1365-2265.2011.04194.x.

    Article  CAS  Google Scholar 

  16. Hilali N, Vural M, Camuzcuoglu H, Camuzcuoglu A, Aksoy N. Increased prolidase activity and oxidative stress in PCOS. Clin Endocrinol. 2013;79(1):105–10. https://doi.org/10.1111/cen.12110.

    Article  CAS  Google Scholar 

  17. Lai Q, Xiang W, Li Q, Zhang H, Li Y, Zhu G, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. J Hum Nutr Diet. 2017; 10.1111/jhn.12545. 10.1007/s11684-017-0575-y.

  18. Nose E, Azhary JM, Koike H, Kunitomi C, Yoshino O, Izumi G, et al. Plasmatic and intracellular markers of oxidative stress in normal weight and obese patients with polycystic ovary syndrome. Sci Rep. 2017;125(8):506–13 10.1038/s41598-017-11252-7 10.1055/s-0043-111241.

    Google Scholar 

  19. Chattopadhayay R, Ganesh A, Samanta J, Jana SK, Chakravarty BN, Chaudhury K. Effect of follicular fluid oxidative stress on meiotic spindle formation in infertile women with polycystic ovarian syndrome. Gynecol Obstet Investig. 2010;69(3):197–202. https://doi.org/10.1159/000270900.

    Article  CAS  Google Scholar 

  20. Pekel A, Gonenc A, Turhan NO, Kafali H. Changes of sFas and sFasL, oxidative stress markers in serum and follicular fluid of patients undergoing IVF. J Assist Reprod Genet. 2015;32(2):233–41. https://doi.org/10.1007/s10815-014-0396-8.

    Article  PubMed  Google Scholar 

  21. Yilmaz N, Inal HA, Gorkem U, Sargin Oruc A, Yilmaz S, Turkkani A. Follicular fluid total antioxidant capacity levels in PCOS. J Obstet Gynaecol. 2016;36(5):654–7. https://doi.org/10.3109/01443615.2016.1148683.

    Article  CAS  PubMed  Google Scholar 

  22. Seleem AK, El Refaeey AA, Shaalan D, Sherbiny Y, Badawy A. Superoxide dismutase in polycystic ovary syndrome patients undergoing intracytoplasmic sperm injection. J Assist Reprod Genet. 2014;31(4):499–504. https://doi.org/10.1007/s10815-014-0190-7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Murri M, Luque-Ramirez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19(3):268–88. https://doi.org/10.1093/humupd/dms059.

    Article  CAS  PubMed  Google Scholar 

  24. Varnagy A, Koszegi T, Gyorgyi E, Szegedi S, Sulyok E, Premusz V, et al. Levels of total antioxidant capacity and 8-hydroxy-2′-deoxyguanosine of serum and follicular fluid in women undergoing in vitro fertilization: focusing on endometriosis. Hum Fertil (Camb). 2020;23(3):200–8. https://doi.org/10.1080/14647273.2018.1535719.

    Article  CAS  Google Scholar 

  25. Shaeib F, Khan SN, Ali I, Thakur M, Saed MG, Dai J, et al. The defensive role of cumulus cells against reactive oxygen species insult in metaphase II mouse oocytes. Reprod Sci. 2016;23(4):498–507. https://doi.org/10.1177/1933719115607993.

    Article  CAS  PubMed  Google Scholar 

  26. Kim JH, Lee JR, Chang HJ, Jee BC, Suh CS, Kim SH. Anti-Mullerian hormone levels in the follicular fluid of the preovulatory follicle: a predictor for oocyte fertilization and quality of embryo. J Korean Med Sci. 2014;29(9):1266–70. https://doi.org/10.3346/jkms.2014.29.9.1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin WQ, Yao LN, Zhang DX, Zhang W, Yang XJ, Yu R. The predictive value of anti-Mullerian hormone on embryo quality, blastocyst development, and pregnancy rate following in vitro fertilization-embryo transfer (IVF-ET). J Assist Reprod Genet. 2013;30(5):649–55. https://doi.org/10.1007/s10815-013-9973-5.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stracquadanio M, Ciotta L, Palumbo MA. Relationship between serum anti-Mullerian hormone and intrafollicular AMH levels in PCOS women. Gynecol Endocrinol. 2018;34(3):223–8. https://doi.org/10.1080/09513590.2017.1381838.

    Article  CAS  PubMed  Google Scholar 

  29. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, et al. Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries. J Clin Endocrinol Metab. 2007;92(1):240–5. https://doi.org/10.1210/jc.2006-1582.

    Article  CAS  PubMed  Google Scholar 

  30. Tong J, Sheng S, Sun Y, Li H, Li WP, Zhang C, et al. Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve. Reproduction. 2017;153(4):443–51. https://doi.org/10.1530/rep-16-0641.

    Article  CAS  PubMed  Google Scholar 

  31. Kim MK, Park EA, Kim HJ, Choi WY, Cho JH, Lee WS, et al. Does supplementation of in-vitro culture medium with melatonin improve IVF outcome in PCOS? Reprod BioMed Online. 2013;26(1):22–9. https://doi.org/10.1016/j.rbmo.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  32. Ogino M, Tsubamoto H, Sakata K, Oohama N, Hayakawa H, Kojima T, et al. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J Assist Reprod Genet. 2016;33(3):367–71. https://doi.org/10.1007/s10815-015-0621-0.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Desquiret-Dumas V, Clément A, Seegers V, Boucret L, Ferré-L'Hotellier V, Bouet PE, et al. The mitochondrial DNA content of cumulus granulosa cells is linked to embryo quality. Hum Reprod. 2017;32(3):607–14. https://doi.org/10.1093/humrep/dew341.

    Article  CAS  PubMed  Google Scholar 

  34. Shepel EA, Voznesenskaya ТY, Blashkiv TV, Yanchii RI. Cumulus cell genes as potential biomarkers of oocyte and embryo developmental competence. Fiziol Zh. 2016;62(1):107–13. https://doi.org/10.15407/fz62.01.107.

    Article  CAS  PubMed  Google Scholar 

  35. Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol Hum Reprod. 2010;16(8):531–8. https://doi.org/10.1093/molehr/gaq032.

    Article  CAS  PubMed  Google Scholar 

  36. Revelli A, Delle Piane L, Casano S, Molinari E, Massobrio M, Rinaudo P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reprod Biol Endocrinol. 2009;7:40. https://doi.org/10.1186/1477-7827-7-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kaihola H, Yaldir FG, Bohlin T, Samir R, Hreinsson J, Åkerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One. 2019;14(12):e0226419. https://doi.org/10.1371/journal.pone.0226419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giudice LC. Endometrium in PCOS: implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235–44. https://doi.org/10.1016/j.beem.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  39. Hu M, Zhang Y, Guo X, Jia W, Liu G, Zhang J, et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am J Physiol Endocrinol Metab. 2019;316(5):E794–809. https://doi.org/10.1152/ajpendo.00359.2018.

    Article  CAS  PubMed  Google Scholar 

  40. Chiarello DI, Abad C, Rojas D, Toledo F, Vazquez CM, Mate A, et al. Oxidative stress: normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol basis Dis. 1866;2020(2):165354. https://doi.org/10.1016/j.bbadis.2018.12.005.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Key Research and Development Program of China (2018YFC1004000), National Natural Science Foundation of China (31871509, 81622021, and 82071606), National Natural Science Foundation of Shandong Province (JQ201816), Innovative Research Team of High-Level Local Universities in Shanghai (SSMU-ZLCX20180401), Key Research and Development Program of Shandong Province (2019GSF108274), and Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Contributions

Shigang Zhao was responsible for the conceptualization. Zhiheng Yu was responsible for the methodology. Lei Cheng was responsible for the resources. Han Zhao was responsible for the supervision. Yue Liu wrote the original draft. Yuanyuan Man and Xueying Gao were responsible for the review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Han Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The approval was obtained from the ethics committee of the Center for Reproductive Medicine, Shandong University. The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Statement of informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, Z., Zhao, S. et al. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J Assist Reprod Genet 38, 471–477 (2021). https://doi.org/10.1007/s10815-020-02014-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-02014-y

Keywords

Navigation