Skip to main content

Advertisement

Log in

Age-associated changes in bovine oocytes and granulosa cell complexes collected from early antral follicles

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To assess the age-associated changes in oocytes and granulosa cells derived from early antral follicles (EAFs).

Method

Gene expression analysis of granulosa cells of the EAFs using a genome analyzer (Illumina) and in vitro culture of oocyte-granulosa cell complexes (OGCs) of EAFs (400–700 μm in diameter) collected from ovaries of aged (>120 months) and young (<50 months) cows.

Results

Gene expression profiles in granulosa cells of EAFs of aged cows, which included changes in genes that encode chaperone proteins and antioxidants. In vivo development of EAFs, as determined by oocyte diameter of EAFs and AFs (3–6 mm in diameter), appeared to be impaired in aged cows and the OGCs of aged cows contained low GSH compared to younger counterparts. When the OGCs were cultured in a medium containing low estradiol (E2, 0.1 μg/mL), the ratio of antrum formation was higher for OGCs from aged animals than that from young animals, while higher abnormal fertilization rate and lower total cell number of the blastocysts were observed in the OGCs of aged cows compared with those of young cows. On the contrary, when the OGCs were cultured in a medium containing 10 μg/mL E2, the ratio of antrum formation and fertilization outcome was comparable between the two age groups, whereas the total cell number of the blastocysts was still low in the aged group.

Conclusion

Aging affects the gene expression profiles of the granulosa cells, and impairs in vitro developmental ability of OGCs collected from EAFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baerwald AR, Adams GP, Pierson RA. Characterization of ovarian follicular wave dynamics in women. Biol Reprod. 2003;69:1023–31.

    Article  CAS  PubMed  Google Scholar 

  2. Malhi PS, Adams GP, Singh J. Bovine model for the study of reproductive aging in women: follicular, luteal, and endocrine characteristics. Biol Reprod. 2005;73:45–53.

    Article  CAS  PubMed  Google Scholar 

  3. Malhi PS, Adams GP, Pierson RA, Singh J. Bovine model of reproductive aging: response to ovarian synchronization and superstimulation. Theriogenology. 2006;66:1257–66.

    Article  CAS  PubMed  Google Scholar 

  4. Janny L, Menezo YJ. Maternal age effect on early human embryonic development and blastocyst formation. Mol Reprod Dev. 1996;45:31–7.

    Article  CAS  PubMed  Google Scholar 

  5. Scholtes MC, Zeilmaker GH. Blastocyst transfer in day-5 embryo transfer depends primarily on the number of oocytes retrieved and not on age. Fertil Steril. 1998;69:78–83.

    Article  CAS  PubMed  Google Scholar 

  6. Pantos K, Athanasiou V, Stefanidis K, Stavrou D, Vaxevanoglou T, Chronopoulou M. Influence of advanced age on the blastocyst development rate and pregnancy rate in assisted reproductive technology. Fertil Steril. 1999;71:1144–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shapiro BS, Richter KS, Harris DC, Daneshmand ST. Influence of patient age on the growth and transfer of blastocyst-stage embryos. Fertil Steril. 2002;77:700–5.

    Article  PubMed  Google Scholar 

  8. Malhi PS, Adams GP, Mapletoft RJ, Singh J. Oocyte developmental competence in a bovine model of reproductive aging. Reproduction. 2007;134:233–9.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto T, Iwata H, Goto H, Shiratuki S, Tanaka H, Monji Y, et al. Effect of maternal age on the developmental competence and progression of nuclear maturation in bovine oocytes. Mol Reprod Dev. 2010;77:595–604.

    Article  CAS  PubMed  Google Scholar 

  10. Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, et al. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod Fertil Dev. 2011;23:424–32.

    Article  CAS  PubMed  Google Scholar 

  11. Takeo S, Goto H, Kuwayama T, Monji Y, Iwata H. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J Reprod Dev. 2012;59:174–9.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Djahanbakhch O, Ezzati M, Zosmer A. Reproductive ageing in women. J Pathol. 2007;211:219–31.

    Article  CAS  PubMed  Google Scholar 

  13. Bancsi LF, Broekmans FJ, Eijkemans MJ, de Jong FH, Habbema JD, te Velde ER. Predictors of poor ovarian response in in vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril. 2002;77:328–36.

    Article  PubMed  Google Scholar 

  14. Malhi PS, Adams GP, Mapletoft RJ, Singh J. Superovulatory response in a bovine model of reproductive aging. Anim Reprod Sci. 2008;109:100–9.

    Article  CAS  PubMed  Google Scholar 

  15. Xu J, Bernuci MP, Lawson MS, Yeoman RR, Fisher TE, Zelinski MB, et al. Survival, growth, and maturation of secondary follicles from prepubertal, young, and older adult rhesus monkeys during encapsulated three-dimensional culture: effects of gonadotropins and insulin. Reproduction. 2010;140:685–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Choi JK, Ahn JI, Park JH, Lim JM. Derivation of developmentally competent oocytes by in vitro culture of preantral follicles retrieved from aged mice. Fertil Steril. 2011;95:1487–9.

    Article  PubMed  Google Scholar 

  17. Orisaka M, Tajima K, Tsang BK, Kotsuji F. 2009. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2:9.

  18. Tatone C, Carbone MC, Falone S, Aimola P, Giardinelli A, Caserta D, et al. Age-dependent changes in the expression of superoxide dismutases and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod. 2006;12:655–60.

    Article  CAS  PubMed  Google Scholar 

  19. Hurwitz JM, Jindal S, Greenseid K, Berger D, Brooks A, Santoro N, et al. Reproductive aging is associated with altered gene expression in human uteinizedgranulosa cells. Reprod Sci. 2010;17:56–67.

    Article  CAS  PubMed  Google Scholar 

  20. Ito M, Miyado K, Nakagawa K, Muraki M, Imai M, Yamakawa N, et al. Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells. Mol Hum Reprod. 2010;16:928–37.

    Article  CAS  PubMed  Google Scholar 

  21. Goto H, Iwata H, Takeo S, Nisinosono K, Murakami S, Monji Y, et al. Effect of bovine age on the proliferative activity, global DNA methylation, relative telomere length and telomerase activity of granulosa cells. Zygote. 2013;21:256–64.

    Article  CAS  PubMed  Google Scholar 

  22. Lim J, Luderer U. Oxidative damage increases and antioxidant gene expression decreases with aging in the mouse ovary. Biol Reprod. 2011;84:775–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Beg MA, Bergfelt DR, Kot K, Wiltbank MC, Ginther OJ. Follicular-fluid factors and granulosa-cell gene expression associated with follicle deviation in cattle. Biol Reprod. 2001;64:432–41.

    Article  CAS  PubMed  Google Scholar 

  24. Endo M, Kawahara-Miki R, Cao F, Kimura K, Kuwayama T, Monji Y, et al. Estradiol supports in vitro development of bovine early antral follicles. Reproduction. 2013;145:85–96.

    Article  CAS  PubMed  Google Scholar 

  25. Hirao Y, Itoh T, Shimizu M, Iga K, Aoyagi K, Kobayashi M, et al. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium. Biol Reprod. 2004;70:83–91.

    Article  CAS  PubMed  Google Scholar 

  26. Hirao Y. Conditions affecting growth and developmental competence of mammalian oocytes in vitro. Anim Sci J. 2011;82:187–97.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: Influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology. 1992;37:963–78.

    Article  CAS  PubMed  Google Scholar 

  28. Takeo S, Kawahara-Miki R, Goto H, Cao F, Kimura K, Monji Y, et al. Age-associated changes in gene expression and developmental competence of bovine oocytes, and a possible countermeasure against age-associated events. Mol Reprod Dev. 2013;80:508–21.

    Article  CAS  PubMed  Google Scholar 

  29. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tasaki H, Iwata H, Sato D, Monji Y, Kuwayama T. Estradiol has a major role in antrum formation of porcine preantral follicles cultured in vitro. Theriogenology. 2013;5:809–14.

    Article  Google Scholar 

  31. Greenaway J, Gentry PA, Feige JJ, LaMarre J, Petrik JJ. Thrombospondin and vascular endothelial growth factor are cyclically expressed in an inverse pattern during bovine ovarian follicle development. Biol Reprod. 2005;72:1071–8.

    Article  CAS  PubMed  Google Scholar 

  32. Harlow CR, Bradshaw AC, Rae MT, Shearer KD, Hillier SG. Oestrogen formation and connective tissue growth factor expression in rat granulosa cells. J Endocrinol. 2007;192:41–52.

    Article  CAS  PubMed  Google Scholar 

  33. Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 2008;79:209–22.

    Article  CAS  PubMed  Google Scholar 

  34. Rasmussen LS, Gisvold SE. New author guidelines. Acta Anaesthesiol Scand. 2008;52:594–5.

    Article  CAS  PubMed  Google Scholar 

  35. Chen AQ, Wang ZG, Xu ZR, Yu SD, Yang ZG. Analysis of gene expression in granulosa cells of ovine antral growing follicles using suppressive subtractive hybridization. Anim Reprod Sci. 2009;115:39–48.

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi KG, Ushizawa K, Hosoe M, Takahashi T. Differential genome-wide gene expression profiling of bovine largest and second-largest follicles: identification of genes associated with growth of dominant follicles. Reprod Biol Endocrinol. 2010;5:8–11.

    Google Scholar 

  37. Mora JM, Fenwick MA, Castle L, Baithun M, Ryder TA, Mobberley M, et al. Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. Biol Reprod. 2012;153:1–14.

    Google Scholar 

  38. Fargnoli J, Kunisada T, Fornace Jr AJ, Schneider EL, Holbrook NJ. Decreased expたさきssion of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci U S A. 1990;87:846–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pratsinis H, Tsagarakis S, Zervolea I, Giannakopoulos F, Stathakos D, Thalassinos N, Kletsas D. Chronic in vivo exposure to glucocorticoids prolongs cellular lifespan: the case of Cushing’s syndrome-patients’ fibroblasts. 2002;37:1237–45.

  40. Gagliano N, Grizzi F, Annoni G. Mechanisms of aging and liver functions. Dig Dis. 2007;25:118–23.

    Article  PubMed  Google Scholar 

  41. Velazquez MM, Alfaro NS, Dupuy CR, Salvetti NR, Rey F, Ortega HH. Heat shock protein patterns in the bovine ovary and relation with cystic ovarian disease. Anim Reprod Sci. 2010;118:201–9.

    Article  CAS  PubMed  Google Scholar 

  42. Gola G, Reggiani L, Romanzi F, Beraudo ML. Principle data in the functional treatment of the antero-posterior and vertical dimensions of the arch. Parodontol Stomatol (Nuova). 1985;24:223–32.

    CAS  Google Scholar 

  43. Liu Z, Youngquist RS, Garverick HA, Antoniou E. Molecular mechanisms regulating bovine ovarian follicular selection. Mol Reprod Dev. 2009;76:351–66.

    Article  CAS  PubMed  Google Scholar 

  44. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T, et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci U S A. 2009;106:3788–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 1839;2014:62–9.

    Google Scholar 

  46. Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer. 1998;19(75):246–53.

    Article  Google Scholar 

  47. Stetler-Stevenson WG, Seo DW. TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med. 2005;11:97–103.

    Article  CAS  PubMed  Google Scholar 

  48. Valeri C, Pappalardo S, De Felici M, Manna C. Correlation of oocyte morphometry parameters with woman’s age. J Assist Reprod Genet. 2011;28:545–52.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995;270:1491–4.

    Article  CAS  PubMed  Google Scholar 

  50. Tschugguel W, Dietrich W, Zhegu Z, Stonek F, Kolbus A, Huber JC. Differential regulation of proteasome-dependent estrogen receptor alpha and beta turnover in cultured human uterine artery endothelial cells. J Clin Endocrinol Metab. 2003;88:2281–7.

    Article  CAS  PubMed  Google Scholar 

  51. Pinzone JJ, Stevenson H, Strobl JS, Berg PE. Molecular and cellular determinants of estrogen receptor alpha expression. Mol Cell Biol. 2004;24:4605–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Soltysik K, Czekaj P. Membrane estrogen receptors - is it an alternative way of estrogen action? J Physiol Pharmacol. 2013;64:129–42.

    CAS  PubMed  Google Scholar 

  53. Yan J, Suzuki J, Yu X, Kan FW, Qiao J, Chian RC. Cryo-survival, fertilization and early embryonic development of vitrified oocytes derived from mice of different reproductive age. J Assist Reprod Genet. 2010;27:605–11.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yuh Shiwa, Misaki Imai, Hikaru Wada, Chihiro Yamamoto, and Kazuma Tsunematsu for technical support. This study was supported by the Promotion and Mutual Aid Corporation for Private Schools of Japan and the Ministry of Education, Culture, Sports, Science, and Technology [Grants-in-Aid for Scientific Research (S0801025)] and Grant-in-Aid for Scientific Research C (KAKENHI, grant number: 25450400) from the Japan society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Iwata.

Additional information

Capsule N Itami conducted culture experiment and wrote this paper and R Kawahara-Miki conducted gene expression analysis and wrote this paper. Their contributions are equal.

N Itami conducted culture experiments and R Kawahara-Miki conducted gene expression analysis and both authors contributed equally to this study.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Table S1

(DOC 28 kb)

Table S2

(DOC 40 kb)

Table S3

(DOC 27 kb)

Table S4

(DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itami, N., Kawahara-Miki, R., Kawana, H. et al. Age-associated changes in bovine oocytes and granulosa cell complexes collected from early antral follicles. J Assist Reprod Genet 31, 1079–1088 (2014). https://doi.org/10.1007/s10815-014-0251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0251-y

Keywords

Navigation