Skip to main content
Log in

The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To test the effects of varying vitrification protocols on the cell cycle status and chromosomal integrity in cumulus-enclosed GV stage rat oocytes.

Methods

Vitrified and thawed rat oocytes were labeled with fluorescent markers for chromatin, cell cycle activation, and f-actin and analyzed by conventional and laser scanning confocal microscopy.

Results

In all vitrification groups, significant alterations in cumulus cell connectivity, cell cycle status, and cytoplasmic actin integrity were observed following warming compared to fresh control oocytes. Based on the protein phosphorylation marker MPM-2, it is clear that warmed oocytes rapidly enter M-phase but are unable to maintain chromosome integrity as a result of multiple chromatin fusions. A prominent reduction in f-actin is evident in both the ooplasm and at the cortex of vitrified oocytes. Finally, an irreversible but irregular retraction of TZPs occurs on the majority of oocytes subjected to any of the vitrification protocols.

Conclusions

These findings draw attention to undesirable consequences of immature oocyte vitrification that compromise cell cycle status and chromatin and cytoskeleton integrity that may not be evident until after fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kim SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril. 2006;85(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  2. Forman EJ, Li X, Ferry KM, Scott K, Treff NR, Scott Jr RT. Oocyte vitrification does not increase the risk of embryonic aneuploidy or diminish the implantation potential of blastocysts created after intracytoplasmic sperm injection: a novel, paired randomized controlled trial using DNA fingerprinting. Fertil Steril. 2012;98(3):644–9.

    Article  CAS  PubMed  Google Scholar 

  3. Practice Committees of American Society for Reproductive M, Society for Assisted Reproductive T. Mature oocyte cryopreservation: a guideline. Fertil Steril. 2013;99(1):37–43.

    Article  Google Scholar 

  4. Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, et al. Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes. Reprod Biomed Online. 2009;19 Suppl 3:29–34.

    Article  PubMed  Google Scholar 

  5. Bromfield JJ, Coticchio G, Hutt K, Sciajno R, Borini A, Albertini DF. Meiotic spindle dynamics in human oocytes following slow-cooling cryopreservation. Hum Reprod. 2009;24(9):2114–23.

    Article  CAS  PubMed  Google Scholar 

  6. Isachenko EF, Nayudu PL. Vitrification of mouse germinal vesicle oocytes: effect of treatment temperature and egg yolk on chromatin and spindle normality and cumulus integrity. Hum Reprod. 1999;14(2):400–8.

    Article  CAS  PubMed  Google Scholar 

  7. Wu C, Rui R, Dai J, Zhang C, Ju S, Xie B, et al. Effects of cryopreservation on the developmental competence, ultrastructure and cytoskeletal structure of porcine oocytes. Mol Reprod Dev. 2006;73(11):1454–62.

    Article  CAS  PubMed  Google Scholar 

  8. Van Blerkom J. Maturation at high frequency of germinal-vesicle-stage mouse oocytes after cryopreservation: alterations in cytoplasmic, nuclear, nucleolar and chromosomal structure and organization associated with vitrification. Hum Reprod. 1989;4(8):883–98.

    PubMed  Google Scholar 

  9. McGinnis LK, Albertini DF. Dynamics of protein phosphorylation during meiotic maturation. J Assist Reprod Genet. 2010;27(4):169–82.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wickramasinghe D, Albertini DF. Centrosome phosphorylation and the developmental expression of meiotic competence in mouse oocytes. Dev Biol. 1992;152(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  11. Wickramasinghe D, Albertini DF. Cell cycle control during mammalian oogenesis. Curr Top Dev Biol. 1993;28:125–53.

    Article  CAS  PubMed  Google Scholar 

  12. Pickering SJ, Braude PR, Johnson MH, Cant A, Currie J. Transient cooling to room temperature can cause irreversible disruption of the meiotic spindle in the human oocyte. Fertil Steril. 1990;54(1):102–8.

    CAS  PubMed  Google Scholar 

  13. Eroglu A, Toth TL, Toner M. Alterations of the cytoskeleton and polyploidy induced by cryopreservation of metaphase II mouse oocytes. Fertil Steril. 1998;69(5):944–57.

    Article  CAS  PubMed  Google Scholar 

  14. Eroglu A, Toner M, Leykin L, Toth TL. Cytoskeleton and polyploidy after maturation and fertilization of cryopreserved germinal vesicle-stage mouse oocytes. J Assist Reprod Genet. 1998;15(7):447–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Pickering SJ, Braude PR, Johnson MH. Cryoprotection of human oocytes: inappropriate exposure to DMSO reduces fertilization rates. Hum Reprod. 1991;6(1):142–3.

    CAS  PubMed  Google Scholar 

  16. Wang H, Racowsky C, Combelles CM. Is it best to cryopreserve human cumulus-free immature oocytes before or after in vitro maturation? Cryobiology. 2012;65(2):79–87.

    Article  PubMed  Google Scholar 

  17. Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, Hassun P, et al. Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification. Fertil Steril. 2010;94(6):2088–95.

    Article  PubMed  Google Scholar 

  18. Grifo JA, Noyes N. Delivery rate using cryopreserved oocytes is comparable to conventional in vitro fertilization using fresh oocytes: potential fertility preservation for female cancer patients. Fertil Steril. 2010;93(2):391–6.

    Article  CAS  PubMed  Google Scholar 

  19. Noyes N, Porcu E, Borini A. Over 900 oocyte cryopreservation babies born with no apparent increase in congenital anomalies. Reprod Biomed Online. 2009;18(6):769–76.

    Article  CAS  PubMed  Google Scholar 

  20. Bagchi A, Woods EJ, Critser JK. Cryopreservation and vitrification: recent advances in fertility preservation technologies. Expert Rev Med Devices. 2008;5(3):359–70.

    Article  PubMed  Google Scholar 

  21. Jo JW, Jee BC, Suh CS, Kim SH. The beneficial effects of antifreeze proteins in the vitrification of immature mouse oocytes. PLoSOne. 2012;7:e37043.

    Article  CAS  Google Scholar 

  22. Albertini DF. Cytoplasmic reorganization during the resumption of meiosis in cultured preovulatory rat oocytes. Dev Biol. 1987;120(1):121–31.

    Article  CAS  PubMed  Google Scholar 

  23. Van Blerkom J. Microtubule mediation of cytoplasmic and nuclear maturation during the early stages of resumed meiosis in cultured mouse oocytes. Proc Natl Acad Sci U S A. 1991;88(11):5031–5.

    Article  PubMed Central  PubMed  Google Scholar 

  24. FitzHarris G, Marangos P, Carroll J. Changes in endoplasmic reticulum structure during mouse oocyte maturation are controlled by the cytoskeleton and cytoplasmic dynein. Dev Biol. 2007;305(1):133–44.

    Article  CAS  PubMed  Google Scholar 

  25. Li R, Albertini DF. The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte. Nat Rev Mol Cell Biol. 2013;14(3):141–52.

    Article  CAS  PubMed  Google Scholar 

  26. Azoury J, Lee KW, Georget V, Hikal P, Verlhac MH. Symmetry breaking in mouse oocytes requires transient F-actin meshwork destabilization. Development. 2011;138(14):2903–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hosu BG, Mullen SF, Critser JK, Forgacs G. Reversible disassembly of the actin cytoskeleton improves the survival rate and developmental competence of cryopreserved mouse oocytes. PLoS One. 2008;3(7):e2787.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Barrett SL, Albertini DF. Cumulus cell contact during oocyte maturation in mice regulates meiotic spindle positioning and enhances developmental competence. J Assist Reprod Genet. 2010;27(1):29–39.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Thomas RE, Armstrong DT, Gilchrist RB. Bovine cumulus cell-oocyte gap junctional communication during in vitro maturation in response to manipulation of cell-specific cyclic adenosine 3′,5′-monophosophate levels. Biol Reprod. 2004;70(3):548–56.

    Article  CAS  PubMed  Google Scholar 

  30. Navarro-Costa P, Correia SC, Gouveia-Oliveira A, Negreiro F, Jorge S, Cidadao AJ, et al. Effects of mouse ovarian tissue cryopreservation on granulosa cell-oocyte interaction. Hum Reprod. 2005;20:1607–14.

    Article  CAS  PubMed  Google Scholar 

  31. Godard NM, Pukazhenthi BS, Wildt DE, Comizzoli P. Paracrine factors from cumulus-enclosed oocytes ensure the successful maturation and fertilization in vitro of denuded oocytes in the cat model. Fertil Steril. 2009;91(5 Suppl):2051–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14(2):159–77.

    Article  CAS  PubMed  Google Scholar 

  33. Albertini DF, Barrett SL. Oocyte-somatic cell communication. Reprod Suppl. 2003;61:49–54.

    CAS  PubMed  Google Scholar 

  34. Antczak M, Van Blerkom J. Oocyte influences on early development: the regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol Hum Reprod. 1997;3(12):1067–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to extend our sincerest thanks to Kimball Pomeroy for statistical analysis and Darlene Limback for her continued technical support. Most of all, our special thanks and acknowledgment go to Sara Brown and Rebekah Lang without whom this study would not be possible. This project was supported by grants from the Eshe Fund (DFA), the National Institute of General Medical Sciences from the National Institutes of Health (P20 GM103318), and the National Institutes of Health (HD 20068 DFA).

Conflict of interest

The authors declare no conflicts of interest regarding this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Samuel Kim.

Additional information

Capsule

A comparison of vitrification protocol variations on cumulus-enclosed rat GV oocytes has revealed dramatic effects on cell cycle status, somatic cell-oocyte interactions, and the stability of the actin cytoskeleton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.S., Olsen, R., Kim, D.D. et al. The impact of vitrification on immature oocyte cell cycle and cytoskeletal integrity in a rat model. J Assist Reprod Genet 31, 739–747 (2014). https://doi.org/10.1007/s10815-014-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0216-1

Keywords

Navigation