Skip to main content
Log in

Serum progesterone concentration on day of embryo transfer in donor oocyte cycles

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the association between serum progesterone (P) levels on the day of embryo transfer (ET) and pregnancy rates in fresh donor IVF/ICSI cycles.

Methods

Fresh donor cycles with day 3 ET from 10/2007 to 8/2012 were included (n = 229). Most cycles (93 %) were programmed with a gonadotropin releasing hormone (GnRH) agonist; oral, vaginal or transdermal estradiol was used for endometrial priming, and intramuscular P was used for luteal support (50–100 mg/day). Recipient P levels were measured at ET, and P dose was increased by 50–100 % if <20 ng/mL per clinic practice. The main outcome measure was rate of live birth (> = 24 weeks gestational age). Generalized estimating equations were used to account for multiple cycles from the same recipient, adjusted a priori for recipient and donor age.

Results

Mean recipient serum P at ET was 25.5 ± 10.1 ng/mL. Recipients with P < 20 ng/mL at ET, despite P dose increases after ET, were less likely to achieve clinical pregnancy (RR = 0.75, 95 % CI = 0.60–0.94, p = 0.01) and live birth (RR = 0.77, 95 % CI = 0.60–0.98, p = 0.04), as compared to those with P ≥ 20 ng/mL. P dose increases were more often required in overweight and obese recipients.

Conclusions

Serum P levels on the day of ET in fresh donor IVF/ICSI cycles were positively correlated with clinical pregnancy and live birth rates. An increase in P dose after ET was insufficient to rescue pregnancy rates. Overweight and obese recipients may require higher initial doses of P supplementation. Future research is needed to define optimal serum P at ET and the interventions to achieve this target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Strauss JF, Williams CJ. The ovarian life cycle. In: Strauss JF, Barbieri RL, editors. Reproductive endocrinology, 6th edn. Philadelphia; 2009. p. 155–90.

  2. Sallam HN, Sallam A, Ezzeldin F, Agamia AF, Abou-Ali A. Reference values for the midluteal plasma progesterone concentration: evidence from human menopausal gonadotropin-stimulated pregnancy cycles. Fertil Steril. 1999;71:711–4.

    Article  CAS  PubMed  Google Scholar 

  3. van der Linden M, Buckingham K, Farquhar C, Kremer JA, Metwally M. Luteal phase support for assisted reproduction cycles. Cochrane Database Syst Rev. 2011;5, CD009154.

    Google Scholar 

  4. Glujovsky D, Pesce R, Fiszbajn G, Sueldo C, Hart RJ, Ciapponi A. Endometrial preparation for women undergoing embryo transfer with frozen embryos or embryos derived from donor oocytes. Cochrane Database Syst Rev. 2010 Jan 20;(1):CD006359.

  5. Fanchin R, Righini C, Olivennes F, Taylor S, de Ziegler D, Frydman R. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod. 1998;13:1968–74.

    Article  CAS  PubMed  Google Scholar 

  6. Check JH, Wilson C, Choe JK, Amui J, Brasile D. Evidence that high serum progesterone (P) levels on day of human chorionic gonadotropin (hCG) injection have no adverse effect on the embryo itself as determined by pregnancy outcome following embryo transfer using donated eggs. Clin Exp Obstet Gynecol. 2010;37:179–80.

    CAS  PubMed  Google Scholar 

  7. Ochsenkühn R, Arzberger A, von Schönfeldt V, Gallwas J, Rogenhofer N, Crispin A, et al. Subtle progesterone rise on the day of human chorionic gonadotropin administration is associated with lower live birth rates in women undergoing assisted reproductive technology: a retrospective study with 2,555 fresh embryo transfers. Fertil Steril. 2012;98:347–54.

    Article  PubMed  Google Scholar 

  8. Huang R, Fang C, Xu S, Yi Y, Liang X. Premature progesterone rise negatively correlated with live birth rate in IVF cycles with GnRH agonist: an analysis of 2,566 cycles. Fertil Steril. 2012;98:664–70.

    Article  CAS  PubMed  Google Scholar 

  9. Xu B, Li Z, Zhang H, Jin L, Li Y, Ai J, et al. Serum progesterone level effects on the outcome of in vitro fertilization in patients with different ovarian response: an analysis of more than 10,000 cycles. Fertil Steril. 2012;97:1321–7.

    Article  CAS  PubMed  Google Scholar 

  10. Prapas Y, Prapas N, Jones EE, Duleba AJ, Olive DL, Chatziparasidou A, et al. The window for embryo transfer in oocyte donation cycles depends on the duration of progesterone therapy. Hum Reprod. 1998;13:720–3.

    Article  CAS  PubMed  Google Scholar 

  11. Kaser DJ, Ginsburg ES, Missmer SA, Correia K, Racowsky C. Intramuscular progesterone versus 8 % Crinone vaginal gel for luteal phase support for day 3 cryopreserved embryo transfer. Fertil Steril. 2012;98:1464–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tummon IS, Daniel SA, Kaplan BR, Nisker JA, Yuzpe AA. Randomized, prospective comparison of luteal leuprolide acetate and gonadotropins versus clomiphene citrate and gonadotropins in 408 first cycles of in vitro fertilization. Fertil Steril. 1992;58:563–8.

    CAS  PubMed  Google Scholar 

  13. Cheung LP, Lam PM, Lok IH, Chiu TT, Yeung SY, Tjer CC, et al. GnRH antagonist versus long GnRH agonist protocol in poor responders undergoing IVF: a randomized controlled trial. Hum Reprod. 2005;20:616–21.

    Article  CAS  PubMed  Google Scholar 

  14. Reichman DE, Jackson KV, Racowsky C. Incidence and development of zygotes exhibiting abnormal pronuclear disposition after identification of two pronuclei at the fertilization check. Fertil Steril. 2010;94:965–70.

    Article  PubMed  Google Scholar 

  15. Racowsky C, Combelles CMH, Nureddin A, Pan Y, Finn A, Miles L, et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod BioMed Online. 2003;6:323–31.

    Article  PubMed  Google Scholar 

  16. Greenland S. Modeling and variable selection in epidemiologic analysis. Am J Public Health. 1989;79:340–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Noyes N, Hampton BS, Berkeley A, Licciardi F, Grifo J, Krey L. Factors useful in predicting the success of oocyte donation: a 3-year retrospective analysis. Fertil Steril. 2001;76:92–7.

    Article  CAS  PubMed  Google Scholar 

  18. Remohí J, Ardiles G, García-Velasco JA, Gaitán P, Simón C, Pellicer A. Endometrial thickness and serum oestradiol concentrations as predictors of outcome in oocyte donation. Hum Reprod. 1997;12:2271–6.

    Article  PubMed  Google Scholar 

  19. Halasz M, Szekeres-Bartho J. The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol. 2013;97(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  20. Kurihara I, Lee DK, Petit FG, Jeong J, Lee K, Lydon JP, et al. COUP-TFII mediates progesterone regulation of uterine implantation by controlling ER activity. PLoS Genet. 2007;3:e102.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Yao MW, Lim H, Schust DJ, Choe SE, Farago A, Ding Y, et al. Gene expression profiling reveals progesterone-mediated cell cycle and immunoregulatory roles of Hoxa-10 in the preimplantation uterus. Mol Endocrinol. 2003;17:610–27.

    Article  CAS  PubMed  Google Scholar 

  22. Jungheim ES, Schon SB, Schulte MB, DeUgarte DA, Fowler SA, Tuuli MG. IVF outcomes in obese donor oocyte recipients: a systematic review and meta-analysis. Hum Reprod. Hum Reprod. 2013;28:2720–7.

    Google Scholar 

  23. Bulletti C, de Ziegler D, Flamigni C, Giacomucci E, Polli V, Bolelli G, et al. Targeted drug delivery in gynaecology: the first uterine pass effect. Hum Reprod. 1997;12:1073–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Financial support

None

Financial disclosures

P.C. Brady: none

D.J. Kaser: none

E.S. Ginsburg: royalties from UpToDate

R.K. Ashby: none

S.A. Missmer: Associate Editor of Human Reproduction

K.F. Correia: none

C. Racowsky: Board member of ASRM; royalties from UpToDate

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Racowsky.

Additional information

Capsule Serum progesterone levels at embryo transfer in fresh donor IVF/ICSI cycles were positively correlated with live birth. Overweight and obese recipients were more likely to have low serum progesterone at transfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, P.C., Kaser, D.J., Ginsburg, E.S. et al. Serum progesterone concentration on day of embryo transfer in donor oocyte cycles. J Assist Reprod Genet 31, 569–575 (2014). https://doi.org/10.1007/s10815-014-0199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0199-y

Keywords

Navigation