Skip to main content
Log in

Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To compare the expression profiles of Tektin 2 and CatSper 2 motility proteins in the spermatozoa of normozoospermic and oligoasthenozoospermic men and determine its correlation with sperm motility, fertilization rate, embryo quality and pregnancy rate.

Methods

Tektin 2 and CatSper 2 protein expression was studied using Western Blotting and immunofluorescence. Tektin 2 and CatSper 2 protein levels were quantified by ELISA.

Results

Oligoasthenozoospermic men were found to have lower fertilization rates, poor embryo quality and lower pregnancy rates as compared to normozoospermic men. The levels of Tektin 2 and CatSper 2 are significantly lower in spermatozoa of oligoasthenozoospermic men as compared to normozoospermic controls; the levels were also lower in immotile fraction as compared to motile fraction of spermatozoa obtained from normozoospermic individuals. The levels of Tektin 2 and CatSper 2 were higher in individuals demonstrating sperm motility >60 % as compared to sperm motility <30 %. Tektin 2 but not CatSper 2 levels were positively associated with fertilization rate, embryo quality and pregnancy rate.

Conclusion

Levels of Tektin 2 and CatSper 2 proteins are positively associated with sperm motility parameters. Measurements of Tektin 2 levels can be correlated with the clinical outcome of ICSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abid S, Gokral J, Maitra A, Meherji P, Kadam S, Pires E, et al. Altered expression of progesterone receptors in testis of infertile men. RBM Online. 2008;17:175–84.

    PubMed  CAS  Google Scholar 

  2. Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith Luke LH, Kahrizi K, et al. Human male infertility caused by mutations in the Catsper1 Channel Protein. Am J Hum Genet. 2009;84:505–10.

    Article  PubMed  CAS  Google Scholar 

  3. Avidan N, Tamary H, Dgany O, Cattan D, Pariente AE, Thulliez M, et al. CATSPER2, a human autosomal nonsyndromic male infertility gene. Eur J Hum Genet. 2003;11:497–502.

    Article  PubMed  CAS  Google Scholar 

  4. Blerkom JV, Davis P, Merriam J, Sinclair J. Nuclear and cytoplasmic dynamics of sperm penetration, pronuclear formation and microtubule organization during fertilization and early preimplantation development in the human. Hum Reprod Updat. 1995;1:429–61.

    Article  Google Scholar 

  5. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  PubMed  CAS  Google Scholar 

  6. Cai ZM, Gui YT, Guo X, Yu J, Guo LD, Zhang LB, et al. Low expression of glycoprotein subunit 130 in ejaculated spermatozoa from asthenozoospermic men. J Androl. 2006;27:645–52.

    Article  PubMed  CAS  Google Scholar 

  7. Carlson AE, Westenbroek RE, Quill T, Ren D, Clapham DE, Hille B, et al. CatSper 1 required for evoked Ca2+ entry and control of flagellar function in sperm. Proc Natl Acad Sci. 2003;100:14864–8.

    Article  PubMed  CAS  Google Scholar 

  8. Chan CC, Shui HA, Wu CH, Wang CY, Sun GH, Chen HM, et al. Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res. 2009;8:5382–6.

    Article  PubMed  CAS  Google Scholar 

  9. Chang XJ, Piperno G. Cross reactivity of antibodies specific for flagellar Tektin and intermediate filament subunits. J Cell Biol. 1987;104:1563–8.

    Article  PubMed  CAS  Google Scholar 

  10. Chetrit AB, Senoz S, Greenblatt EM, Casper RF. In vitro fertilization outcome in the presence of severe male factor infertility. Fertil Steril. 1995;63:1032–7.

    Google Scholar 

  11. Heredia JM, de Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23:783–91.

    Article  Google Scholar 

  12. Hinduja IN, Mehta RH, Gopalkrishnan K, Anandkumar TC. Manual for human in vitro fertilization – Embryo transfer and Gamete Intra-Fallopian Transfer, 1st ed. ICMR; 1991 pp 24–28.

  13. Hinduja I, Zaveri K, Baliga N. Human sperm centrin levels & outcome of intracytoplasmic sperm injection (ICSI) - A pilot study. Indian J Med Res. 2008;128:606–10.

    PubMed  Google Scholar 

  14. Hoshi K, Katayose H, Yanagida K, Sato A, Yazawa H. Intra cytoplasmic sperm injection using immobilizes or motile human spermatozoon. Fertil Steril. 1995;63:1241–5.

    PubMed  CAS  Google Scholar 

  15. Iguchi N, Tanaka H, Nakamura Y, Nozaki M, Fujiwara T, Nishimune Y. Cloning and characterization of the human tektin-t gene. Mol Hum Reprod. 2002;8:525–30.

    Article  PubMed  CAS  Google Scholar 

  16. Jin JL, O’doherty AM, Wang S, Zheng H, Sanders KM, Yan W. Catsper 3 and Catsper 4 encode two cation channel like proteins exclusively expressed in the testis. Biol Reprod. 2005;73:1235–42.

    Article  PubMed  CAS  Google Scholar 

  17. Kahraman S, Tasdemir M, Polat I, Islk AZ, Biberoglu K, Vanderzwalmen P, et al. Pregnancies achieved with testicular and ejaculated spermatozoa in combination with intracytoplasmic sperm injection in men with totally or initially immotile spermatozoa in the ejaculate. Hum Reprod. 1996;11:1343–6.

    Article  PubMed  CAS  Google Scholar 

  18. Kovalski N, Lamirande R, Gagnon C. Reactive oxygen species generated by human neutrophils inhibit sperm motility, protective effect of seminal plasma and scavengers. Fertil Steril. 1992;58:809–16.

    PubMed  CAS  Google Scholar 

  19. Kruger TF, Menkveld R, Stander FSH, Lombard CJ, Van der Merwe JP, Zyl JA, et al. Sperm morphologic factors as a prognostic factor in in-vitro fertilization. Fertil Steril. 1986;46:118–1123.

    Google Scholar 

  20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  PubMed  CAS  Google Scholar 

  21. Lambard S, Galeraud-Denis I, Bouraima H, Bourguiba S, Chocat A, Carreau S. Expression of aromatase in human ejaculated spermatozoa: a putative marker of motility. Mol Hum Reprod. 2003;9:117–24.

    Article  PubMed  CAS  Google Scholar 

  22. Li H-G, Ding X-F, Liao A-H, Kong X-B, Xiong C-L. Expression of CatSper family transcripts in the mouse testis during post-natal development and human ejaculated spermatozoa: relationship to sperm motility. Mol Hum Reprod. 2007;13:299–306.

    Article  PubMed  CAS  Google Scholar 

  23. Li H-G, Ding X-F, Liao A-H, Zhou H, Xiong C-L. The expression and significance of Catsper1 in human testis and ejaculated spermatozoa. Asian J Androl. 2006;8:301–6.

    Article  PubMed  Google Scholar 

  24. Lipshultz L. Subfertility. In: Kaufman J, editor. Current urology therapy. Philadelphia: WB Saunders; 1980.

    Google Scholar 

  25. Liu J, Nagy Z, Joris H, Tournaye H, Smitz J, Camus M, et al. Analysis of 76 total fertilization failure cycles out 2732 ICSI cycle. Hum Reprod. 1995;10:2630–6.

    PubMed  CAS  Google Scholar 

  26. Nagvenkar P, Zaveri K, Hinduja I. Comparison of the sperm aneuploidy rate in severe oligozoospermic and oligozoospermic men and its relation to intracytoplasmic sperm injection outcome. Fertil Steril. 2005;8:925–31.

    Article  Google Scholar 

  27. Nagy ZP, Liu J, Joris H, Verheyen G, Tournaye H, Camus M, et al. The result of intracytoplasmic sperm injection is not related to any of the three basic sperm parameters. Hum Reprod. 1995;10:1123–9.

    PubMed  CAS  Google Scholar 

  28. Nijs M, Vanderzwalmen P, Vandamme B, G-Bertin S, Lejeune B, Segal L, et al. Fertilizing ability of immotile spermatozoa after intracytoplasmic sperm injection. Hum Reprod. 1996;11:2180–5.

    Article  PubMed  CAS  Google Scholar 

  29. Nikpoor P, Mowla SJ, Movahedin M, Ziaee SA-M, Tiraihi T. Catsper gene expression in postnatal development of mouse testis and in subfertile men with deficient sperm motility. Hum Reprod. 2004;19:124–8.

    Article  PubMed  Google Scholar 

  30. Overstreet JW, Gould JE, Katz DF, Hanson FW. In vitro capacitation of human spermatozoa after passage through a column of cervical mucus. Fertil Steril. 1980;34:604–6.

    PubMed  CAS  Google Scholar 

  31. Palermo GD, Adler A, Cohen J, Rosenwake Z, Alikani M. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil Steril. 1995;63:1231–40.

    PubMed  CAS  Google Scholar 

  32. Pirner MA, Linck RW. Tektins are heterodimeric polymers in flagellar microtubules with axial periodicities matching the tubulin lattice. J Biol Chem. 1994;269:31800–6.

    Google Scholar 

  33. Quill T, Ren D, Clapham DE, Garbers DL. A voltage-gated ion channel expressed specifically in spermatozoa. Proc Natl Acad Sci. 2001;98:12527–31.

    Article  PubMed  CAS  Google Scholar 

  34. Quill TA, Sugden SA, Rossi KL, Doolittle LK, Hammer RE, Garbers DL. Hyperactivated sperm motility driven by CatSper 2 is required for fertilization. Proc Natl Acad Sci U S A. 2003;100:14869–74.

    Google Scholar 

  35. Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, et al. A sperm ion channel required for sperm motility and male fertility. Nature. 2001;413:603–9.

    Article  PubMed  CAS  Google Scholar 

  36. Roy A, Lin YN, Agno JE, DeMayo FJ, Matzuk MM. Absence of tektin 4 causes asthenozoospermia and subfertility in male mice. FASEB. 2007;21:1013–25.

    Article  CAS  Google Scholar 

  37. Shah C, Modi D, Sachdeva G, Gadkar S, D’Souza S, Puri C. N-terminal region of progesterone receptor B isoform in human spermatozoa. Int J Androl. 2005;28:360–71.

    Article  PubMed  CAS  Google Scholar 

  38. Siva AB, Kameshwari DB, Singh V, Pavani K, Sundaram CS, Rangaraj N, et al. Proteomics-based study on asthenozoospermia: differential ex-pression of proteasome alpha complex. Mol Hum Reprod. 2010;16:452–62.

    Article  PubMed  CAS  Google Scholar 

  39. Steffen W, Linck RW. Evidence for tektins in centrioles and axonemal microtubules. Proc Natl Acad Sci. 1988;85:2643–7.

    Article  PubMed  CAS  Google Scholar 

  40. Takuya M, Yoshiko H, Masamichi D, Hiroshi I. Molecular Cloning of a now member of TEKTIN family, Tektin 4, located to the flagella of rat spermatozoa. Mol Reprod Dev. 2005;72:120–8.

    Article  Google Scholar 

  41. Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, et al. Mice deficient in the axonemal protein tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24:7958–64.

    Article  PubMed  CAS  Google Scholar 

  42. Turhan N, Pekel A, Ayrim A, Bayrak O. ICSI outcome in severely oligoasthenozoospermic patients and its relationship to prewash progressive sperm motility. Turk J Med Sci. 2011;4:995–9.

    Google Scholar 

  43. Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev. 2006;18:25–38.

    Article  PubMed  Google Scholar 

  44. Veeck LL. Pre embryo grading. Atlas of Human Oocytes and early conceptus, Vol 2. USA: Williams and Wilkins; 1991. p. 121–44.

    Google Scholar 

  45. Vendrell JM, Arán B, Veiga A, García F, Coroleu B, Egozcue S, et al. Spermatogenic patterns and early embryo development after intracytoplasmic sperm injection in severeoligoasthenozoospermia. J Assist Reprod Genet. 2003;20:106–12.

    Article  PubMed  Google Scholar 

  46. Verheyen G, Tournaye H, Staessen C, De Vos A, Vandervorst M, Steirteghem AV. Controlled comparison of conventional in-vitro fertilization and intracytoplasmic sperm injection in patients with asthenozoospermia. Hum Reprod. 1999;14:2313–9.

    Article  PubMed  CAS  Google Scholar 

  47. WHO Laboratory manual for the examination of Human Semen and sperm-cervical mucus Interaction, World Health Organization, 4th ed. Cambridge University Press; 1999 pp 6–33 and 104–105.

  48. Xia P. Intra cytoplasmic sperm injection: correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod. 1997;12:1750–5.

    Article  PubMed  CAS  Google Scholar 

  49. Zhao C, Huo R, Wang FQ, Lin M, Zhou ZM, Sha JH. Identification of several proteins involved in regulation of sperm motility by proteomic analysis. Fertil Steril. 2007;87:436–8.

    Article  PubMed  CAS  Google Scholar 

  50. Zuccarello D, Ferlin A, Cazzadore C, Pepe A, Garolla A, Moretti A, et al. Mutations in dynein genes in patients affected by isolated non-syndromic asthenozoospermia. Hum Reprod. 2008;23:1957–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dr Veena Bangera, Sister Benny Castellino, Sheetal Shah and the entire staff of INKUS INF CENTRE, for providing semen samples and also for their assistance and advice without which this work was impossible. We are also grateful to ICMR and the PhD students of Molecular and Cellular Biology Laboratory at NIRRH, Parel for excellent technical assistance.

Funding

We are extremely thankful to Jaslok Hospital for funding the project (Research project number 448).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indira Hinduja.

Additional information

Capsule

Sperm tail proteins Tektin 2 and CatSper 2 are lower in immotile spermatozoa and in the spermatozoa of oligoasthenozoospermic men. Reduced levels of these proteins appear to associate with reduced fertilization rates, poor embryo quality and low pregnancy rate in oligoasthenozoospermic men as compared to normozoospermic men. Large scale studies need to be conducted to determine if Tektin 2 and CatSper 2 can serve as markers for predicting the success rate of ART in infertile men.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhilawadikar, R., Zaveri, K., Mukadam, L. et al. Levels of Tektin 2 and CatSper 2 in normozoospermic and oligoasthenozoospermic men and its association with motility, fertilization rate, embryo quality and pregnancy rate. J Assist Reprod Genet 30, 513–523 (2013). https://doi.org/10.1007/s10815-013-9972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-9972-6

Keywords

Navigation