Skip to main content
Log in

One abstinence day decreases sperm DNA fragmentation in 90 % of selected patients

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this prospective descriptive study was to evaluate the efficacy of reducing sexual abstinence as a strategy to decrease sperm DNA fragmentation.

Methods

Men with one or more of the following characteristics were included in the study: older than 44, smoking more than 10 cigarettes per day, with a body mass index over 25, diabetes mellitus, varicocele, a previous chemotherapy treatment, severe oligozoospermia, prostatitis, cryptorchidism, having a partner with recurrent miscarriage and/or implantation failure, poor embryo morphology and/or fertilization failure. Patients were asked to produce a semen sample after 3 to 7 abstinence days which was subjected to a sperm DNA fragmentation test. When DNA fragmentation was above or equal to 30 %, it was considered to be altered. Patients with increased DNA fragmentation were asked to produce another semen sample following a “one abstinence day protocol”. This protocol required producing up to three semen samples with 1 day of abstinence and measuring sperm DNA fragmentation.

Results

Four hundred and sixteen patients produced a first semen sample after a sexual abstinence of 3 to 7 days. Sperm DNA fragmentation was altered in 46 samples (11.1 %). Thirty five patients with increased DNA fragmentation samples completed the “one abstinence day protocol”. DNA fragmentation decreased to normal values in one of the three attempts in 91.4 % of the patients: 81.3 % in the first attempt, 12.5 % in the second try and 6.3 % in the third.

Conclusions

This approach could be a simple, low-cost and effective way to decrease sperm DNA damage to normal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sun J-G, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56:602–7.

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez JG, Sharma Rakesh K, Ollero M, Saleh Ramadan A, Lopez MC, Thomas Jr AJ, et al. Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril. 2002;78:319–28.

    Article  PubMed  Google Scholar 

  3. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci. 2006;103:9601–6.

    Article  PubMed  CAS  Google Scholar 

  4. Potts RJ, Newbury CJ, Smith G, Notarianni LJ, Jefferies TM. Sperm chromatin damage associated with male smoking. Mutat Res. 1999;423:103–4.

    Article  PubMed  CAS  Google Scholar 

  5. Viloria T, Garrido N, Fernández JL, Remohí J, Pellicer A, Meseguer M. Sperm selection by swim-up in terms of deoxyribonucleic acid fragmentation as measured by the sperm chromatin dispersion test is altered in heavy smokers. Fertil Steril. 2007;88:523–5.

    Article  PubMed  Google Scholar 

  6. Saleh RA, Agarwal A, Sharma RK, Said TM, Sikka SC, Thomas Jr AJ. Evaluation of nuclear DNA damage in spermaozoa from infertile men with varicocele. Fertil Steril. 2003;80:1431–6.

    Article  PubMed  Google Scholar 

  7. Chi-huang C, Shang-sen l, Da-chang C, Hsin-hsuan C, I-ching C, Yung-ning C, et al. Apoptosis and Kinematics of ejaculated spermatozoa in patients with varicocele. J Androl. 2004;25:348–53.

    Google Scholar 

  8. Enciso M, Muriel l, Fernández JL, Goyanes V, Segrelles E, Marcos M, et al. Infertile men with varicocele show a high relative proportion of sperm cells with intense nuclear damage level, evidenced by the sperm chromatin dispersion test. J Androl. 2006;27:106–11.

    Article  PubMed  Google Scholar 

  9. Robaire B, Hales BF. Mechanisms of action of cyclophosphamide as a male-mediated developmental toxicant. Adv Exp Med Biol. 2003;518:169–80.

    Article  PubMed  CAS  Google Scholar 

  10. Agbaje IM, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C, et al. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;7:1871–7.

    Article  Google Scholar 

  11. Kort HI, Massey JB, Carlene WE, Mitchell-Leef D, Shapiro DB, Witt MA, et al. Impact os body mass index values on sperm quantity and quality. J Androl. 2006;27:450–2.

    Article  PubMed  Google Scholar 

  12. Banks S, King SA, Irvine SD, Saunders TKP. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129:505–14.

    Article  PubMed  CAS  Google Scholar 

  13. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosalvez J. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Micoplasma. Fertil Steril. 2008;90:328–34.

    Article  PubMed  Google Scholar 

  14. Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas Jr AJ, Nada EA, et al. Leukocytospermia is associated with increased ROS production by human spermatozoa. Fertil Steril. 2002;78:1215–24.

    Article  PubMed  Google Scholar 

  15. Tomlinson MJ, White A, Barratt CLR, Bolton AE, Cooke ID. The removal of morphologically abnormal sperm forms by phagocytes: a positive role for seminal leukocites. Hum Reprod. 1992;4:517–22.

    Google Scholar 

  16. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationship with semen quality. J Androl. 2000;21:33–44.

    PubMed  CAS  Google Scholar 

  17. Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73:43–50.

    Article  PubMed  Google Scholar 

  18. Zini A, Bielecki R, Phang D, Zenzes MT. Correlation between two marked sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;4:674–7.

    Article  Google Scholar 

  19. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60:1069–72.

    Article  PubMed  Google Scholar 

  20. Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Jesper Gyllemborg J, Ernst E, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;6:1265–72.

    Article  Google Scholar 

  21. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;12:3122–8.

    Article  Google Scholar 

  22. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;1:174–9.

    Google Scholar 

  23. Muriel L, Garrido N, Fernández JL, Remohí J, Pellicer A, De los Santos MJ, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85:371–83.

    Article  PubMed  CAS  Google Scholar 

  24. Velez de la Calle JP, Muller A, Walschaerts M, Clavere JL, Jiménez C, Wittemer C, et al. Sperm deoxyribonucleic acid fragmentation as assessed by sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90:1792–9.

    Article  PubMed  Google Scholar 

  25. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;6:1401–8.

    Article  Google Scholar 

  26. Larson KL, DeJonge CJ, Barnes AM, Jost LK, Evenson DP. Sperm chromatin structure assay parameters as predictors of failed pregnancy following assisted reproductive techniques. Hum Reprod. 2000;8:1717–22.

    Article  Google Scholar 

  27. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an inceased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;12:2663–8.

    Article  Google Scholar 

  28. Fernández-González R, Nuno Moreira P, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, et al. Long-term effects of mouse intracytiplasmatic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    Article  PubMed  Google Scholar 

  29. Pérez-Crespo M, Moreira P, Pintado B, Gutiérrez-Adán A. Factors from damaged sperm affect its DNA integrity and its ability to promote embryo implantation in mice. J Androl. 2008;29:47–54.

    Article  PubMed  Google Scholar 

  30. Lewis SEM, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41.

    Article  PubMed  CAS  Google Scholar 

  31. World Health Organization (WHO). Laboratory manual for the examination and processing of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: University Press; 1999.

    Google Scholar 

  32. Levitas E, Lunenfeld E, Weiss N, Friger M, Har-Vardi I, Koifman A, et al. Relationship between the duration of sexual abstinence and semen quality: analysis of 9,489 semen samples. Fertil Steril. 2005;83:1680–6.

    Article  PubMed  Google Scholar 

  33. Fernández JL, Muriel M, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24:59–66.

    PubMed  Google Scholar 

  34. Spanò M, Kolstad AH, Larsen SB, Cordelli E, Leter G, Giwercman A, et al. The applicability of the flow cytometric sperm chromatin structute assay in epidemiological studies. Hum Reprod. 1998;9:2495–505.

    Article  Google Scholar 

  35. Richthoff J, Spano M, Giwercman YL, Frohm B, Jepson K, Malm J, et al. The impact of testicular and accessory sex gland function on sperm chromatin integrity as assessed by the sperm chromatin structure assay (SCSA). Hum Reprod. 2002;12:3162–9.

    Article  Google Scholar 

  36. Gosálvez J, González-Martinez M, López-Fernández C, Fernández JL, Sánchez-Martin P. Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil Steril. 2011;96:1083–6.

    Article  PubMed  Google Scholar 

  37. De Jonge C, LaFromboise M, Bosmans E, Pharm D, Ombelet W, Cox A, et al. Influence of the abstinence period on human sperm quality. Fertil Steril. 2004;82:57–65.

    Article  PubMed  Google Scholar 

  38. Seligman J, Kosower NS, Weissenberg R, Shalgi R. Thioldisulfide status of human sperm proteins. J Reprod Fertil. 1994;101:435–43.

    Article  PubMed  CAS  Google Scholar 

  39. Ollero M, Gil-Guzman E, Lopez MC, Sharma RK, Agarwal A, Larson K, et al. Characterizations of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Hum Reprod. 2001;9:1912–21.

    Article  Google Scholar 

  40. Erenpreiss J, Bungum M, Spano M, Elzanaty S, Orbidans J, Giwercman A. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;8:2061–4.

    Article  Google Scholar 

  41. Duru NK, Morshedi MS, Schuffner A, Oehninger S. Cryopreservation-thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and Not DNA fragmentation. J Androl. 2001;22:646–51.

    PubMed  CAS  Google Scholar 

  42. Agarwal A, Nallella KP, Allamaneni SR, Said TM. Role of antioxidants in treatment of male infertility: an overview of literature. Reprod Biomed Online. 2004;8:616–27.

    Article  PubMed  CAS  Google Scholar 

  43. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26:349–53.

    Article  PubMed  CAS  Google Scholar 

  44. Greco E, Romano S, Iacobelli M, Ferrero S, Elena Baroni E, Minasi MG, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;9:2590–4.

    Article  Google Scholar 

  45. Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. ANZJOG. 2007;47:216–21.

    PubMed  Google Scholar 

  46. Tunc O, Thompson J, Tremellen K. Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online. 2010;18:761–8.

    Article  Google Scholar 

  47. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2004;1:226–30.

    Article  Google Scholar 

  48. Palermo GD, Cohen J, Alikani M, Adler A, Rosenwaks Z. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility. Fertil Steril. 1995;63:1231–40.

    PubMed  CAS  Google Scholar 

  49. Said TM, Agarwal A, Zborowski M, Grunewald S, Glander H-J, Paasch U. Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl. 2008;29:134–42.

    Article  PubMed  Google Scholar 

  50. Rawe VY, Boudria HU, Alvarez Sedóa C, Carroa M, Papiera S, Nodara F. Healthy baby born after reduction of sperm DNA fragmentation using cell sorting before ICSI. Reprod Biomed Online. 2010;20:320–3.

    Article  PubMed  Google Scholar 

  51. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Ciampaglia W, Filicori M. “Physiologic ICSI”: Hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril. 2010;93:598–604.

    Article  PubMed  Google Scholar 

  52. Practice Committee of the American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil Steril. 2013;99:673–7.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Pons.

Additional information

Capsule One abstinence day may be a simple, low cost and effective way to lower sperm DNA fragmentation to normal values.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pons, I., Cercas, R., Villas, C. et al. One abstinence day decreases sperm DNA fragmentation in 90 % of selected patients. J Assist Reprod Genet 30, 1211–1218 (2013). https://doi.org/10.1007/s10815-013-0089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-013-0089-8

Keywords

Navigation